Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse

Abstract

During physiological T-cell stimulation by antigen presenting cells (APCs), a major T-cell membrane rearrangement is known to occur leading to the organization of 'supramolecular activation clusters' at the immunological synapse1,2. A possible role for the synapse is the generation of membrane compartments where signalling may be organized and propagated2. Thus, engagement of the costimulatory molecule CD28 at the immunological synapse promotes the organization of a signalling compartment by inducing cytoskeletal changes and lipid raft accumulation3,4,5. We identified the actin-binding protein Filamin-A (FLNa) as a novel molecular partner of CD28. We found that, after physiological stimulation, CD28 associated with and recruited FLNa into the immunological synapse, where FLNa organized CD28 signalling. FLNa knockdown by short interfering RNA (siRNA) inhibited CD28-mediated raft accumulation at the immunological synapse and T-cell costimulation. Together, our data indicate that CD28 binding to FLNa is required to induce the T-cell cytoskeletal rearrangements leading to recruitment of lipid microdomains and signalling mediators into the immunological synapse.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD28 associates with FLNa and induces its recruitment into the immunological synapse.
Figure 2: CD28 costimulation induces specific accumulation of lipid rafts at the immunological synapse.
Figure 3: FLNa is required for CD28-induced raft recruitment into the immunological synapse.
Figure 4: FLNa recruitment into the immunological synapse requires the CD28 C-terminal PxxPP motif.
Figure 5: FLNa is required for CD28-induced T-cell costimulation.

Similar content being viewed by others

References

  1. Monks, C. R., Freiberg, B. A., Kupfer H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Dustin, M. L. & Shaw, A. S. Costimulation: building an immunological synapse. Science 283, 649–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Tavano, R. et al. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J. Immunol. 173, 5392–5397 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Manes, S. & Viola, A. Lipid rafts in lymphocyte activation and migration. Mol. Membr. Biol. 23, 59–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Pizzo, P. et al. Lipid rafts and TCR signalling: a critical revaluation. Eur. J. Immunol. 32, 3082–3091 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Pizzo, P. et al. Physiological T cell activation starts and propagates in lipid rafts. Immunol. Lett. 91, 3–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Rouquette-Jazdanian, A. K., Pelassy, C., Breittmayer, J. P. & Aussel, C. Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell. Signal. 18, 105–122 (2005).

    Article  PubMed  Google Scholar 

  12. Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W. & Harder, T. Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodgers, W. & Rose, J. K. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J. Cell Biol. 135, 1515–1523 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Janes, P. W., Ley, S. C. & Magee, A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, M. et al. CD45 signals outside of lipid rafts to promote ERK activation, synaptic raft clustering, and IL-2 production. J. Immunol. 174, 1479–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sechi, A. S. & Wehland, J. Interplay between TCR signalling and actin cytoskeleton dynamics. Trends Immunol. 25, 257–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Rodgers, W., Farris, D. & Mishra, S. Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends Immunol. 26, 97–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl Acad. Sci. USA. 92, 5027–5031 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8, 554–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J. et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med. 190, 1329–1342 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Villalba, M. et al. Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J. Cell Biol. 155, 331–338 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dupre, L. A. et al. Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 17, 157–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol. 2, 138–145 (2001).

    Article  CAS  Google Scholar 

  24. Hayashi, K. & Altman, A. Filamin A is required for T cell activation mediated by protein kinase C-theta. J. Immunol. 177, 1721–1728 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Glebov, O. O. & Nichols, B. J. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nature Cell Biol. 6, 238–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H. & Stossel, T. P. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl Acad. Sci. USA 96, 2122–2128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salazar-Fontana, L. I., Barr, V., Samelson, L. E. & Bierer, B. E. CD28 engagement promotes actin polymerization through the activation of the small Rho GTPase Cdc42 in human T cells. J. Immunol. 171, 2225–2232 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Han, J. et al. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17, 1346–1353 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viola, A. Amplification of TCR signaling by membrane dynamic microdomains. Trends Immunol. 22, 322–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Karr, R. W., Panina-Bordignon, P., Yu, W. Y. & Lanzavecchia, A. Antigen-specific T cells with monogamous or promiscuous restriction patterns are sensitive to different HLA-DR β chain substitutions. J. Immunol. 146, 4242–4247 (1991).

    CAS  PubMed  Google Scholar 

  31. Ponsioen B. et al. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as novel cAMP indicator. EMBO Rep. 5, 1176–1180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharmaa C. P. & Goldmann W. H. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking. Cell Biol. Intl 28, 935–941 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. P. Stossel and F. Nakamura for providing FLNa constructs and advice, and T. Harder for scientific discussion. We also thank M. Bettella and A. Cabrelle for technical support. This work has been supported by grants from the Italian Association for Cancer Research (AIRC) and University of Padua (Progetto d'Ateneo) to A.V. and from AIRC, the Italian Space Agency (ASI, MoMa “From Molecule to Man” Project) to L.T. L.T is also supported by “Fondazione Andrea Cesalpino” Policlinico Umberto I (University of Rome “La Sapienza”, Rome Italy). S.M. is supported by the Spanish Ministry of Education and Science (SAF2005-00241).

Author information

Authors and Affiliations

Authors

Contributions

A.V. designed the study and wrote the manuscript. S.M. provided reagents and designed the yeast two-hybrids experiment. L.T. provided reagents and suggestions. M.S. performed the NF-AT luciferase assay and control experiments not shown in the manuscript. S.J.B. performed the yeast two-hybrid assay. R.T. and R.L.C. performed all the other experiments, prepared the figures and performed statistical tests.

Corresponding author

Correspondence to Antonella Viola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and Supplementary table S1 (PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavano, R., Contento, R., Baranda, S. et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8, 1270–1276 (2006). https://doi.org/10.1038/ncb1492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1492

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing