Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis

Abstract

Autophagy-related gene (Atg) 5 is a gene product required for the formation of autophagosomes. Here, we report that Atg5, in addition to the promotion of autophagy, enhances susceptibility towards apoptotic stimuli. Enforced expression of Atg5-sensitized tumour cells to anticancer drug treatment both in vitro and in vivo. In contrast, silencing the Atg5 gene with short interfering RNA (siRNA) resulted in partial resistance to chemotherapy. Apoptosis was associated with calpain-mediated Atg5 cleavage, resulting in an amino-terminal cleavage product with a relative molecular mass of 24,000 (Mr 24K). Atg5 cleavage was observed independent of the cell type and the apoptotic stimulus, suggesting that calpain activation and Atg5 cleavage are general phenomena in apoptotic cells. Truncated Atg5 translocated from the cytosol to mitochondria, associated with the anti-apoptotic molecule Bcl-xL and triggered cytochrome c release and caspase activation. Taken together, calpain-mediated Atg5 cleavage provokes apoptotic cell death, therefore, represents a molecular link between autophagy and apoptosis — a finding with potential importance for clinical anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atg5 regulates cytotoxicity of death triggers.
Figure 2: Apoptosis is associated with Atg5 cleavage as assessed by immunoblotting.
Figure 3: Atg5 is cleaved by calpain.
Figure 4: Enforced expression of truncated Atg5 induces apoptosis, which is blocked by Bcl-2.
Figure 5: Truncated Atg5 translocates to mitochondria, binds to Bcl-xL but not Bax and releases cytochrome c into the cytosol.

Similar content being viewed by others

References

  1. Levine, B. & Klionsky, D. J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  Google Scholar 

  2. Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891–2906 (2004).

    Article  CAS  Google Scholar 

  3. Blommaart, E. F., Luiken, J. J. & Meijer, A. J. Autophagic proteolysis: control and specificity. Histochem. J. 29, 365–385 (1997).

    Article  CAS  Google Scholar 

  4. Yu, L. et al. Regulation of an ATG7–beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    Article  CAS  Google Scholar 

  5. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  Google Scholar 

  6. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell. Biol. 152, 657–667 (2001).

    Article  CAS  Google Scholar 

  7. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  Google Scholar 

  8. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  Google Scholar 

  9. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  Google Scholar 

  10. Simon, H.-U. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol. Rev. 193, 101–110 (2003).

    Article  CAS  Google Scholar 

  11. Gao, G. & Dou, Q. P. N-terminal cleavage of Bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes Bcl-2-independent cytochrome c release and apoptotic cell death. J. Cell Biochem. 80, 53–72 (2000).

    Article  CAS  Google Scholar 

  12. Altznauer, F., Conus, S., Cavalli, A., Folkers, G. & Simon, H.-U. Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis. J. Biol. Chem. 279, 5947–5957 (2004).

    Article  CAS  Google Scholar 

  13. Arthur, J. S., Elce, J. S., Hegadorn, C., Williams, K. & Greer, P. A. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol. Cell. Biol. 20, 4474–4481 (2000).

    Article  CAS  Google Scholar 

  14. Martin, S. J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556 (1995).

    Article  CAS  Google Scholar 

  15. Strasser, A. The role of BH3-only proteins in the immune system. Nature Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  Google Scholar 

  16. Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to mitochondria: A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).

    Article  CAS  Google Scholar 

  17. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  Google Scholar 

  18. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  Google Scholar 

  19. Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E. & George, D. L. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nature Cell Biol. 6, 443–450 (2004).

    Article  CAS  Google Scholar 

  20. Li, H. et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289, 1159–1164 (2000).

    Article  CAS  Google Scholar 

  21. Karuman, P. et al. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7, 1307–1319 (2001).

    Article  CAS  Google Scholar 

  22. Chua, B. T. et al. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nature Cell Biol. 5, 1083–1089 (2003).

    Article  CAS  Google Scholar 

  23. Daigle, I., Yousefi, S., Colonna, M., Green, D. R. & Simon, H.-U. Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nature Med. 8, 61–67 (2002).

    Article  CAS  Google Scholar 

  24. Simon, H.-U. et al. Eosinophils maintain their capacity to signal and release eosinophil cationic protein upon repetitive stimulation with the same agonist. J. Immunol. 165, 4069–4075 (2000).

    Article  CAS  Google Scholar 

  25. Altznauer, F. et al. Inflammation-associated cell cycle-independent block of apoptosis by survivin in terminally differentiated neutrophils. J. Exp. Med. 199, 1343–1354 (2004).

    Article  CAS  Google Scholar 

  26. Martinelli, S. et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J. Biol. Chem. 279, 44123–44132 (2004).

    Article  CAS  Google Scholar 

  27. Adrain, C., Creagh, E. M. & Martin, S. J. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J. 20, 6627–6636 (2001).

    Article  CAS  Google Scholar 

  28. Yousefi, S., Green, D. R., Blaser, K. & Simon, H.-U. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc. Natl Acad. Sci. USA 91, 10868–10872 (1994).

    Article  CAS  Google Scholar 

  29. von Gunten, S. et al. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood 106, 1423–1431 (2005).

    Article  CAS  Google Scholar 

  30. Takeuchi, H., Kanzawa, T., Kondo, Y. & Kondo, S. Inhibition of platelet-derived growth factor signalling induces autophagy in malignant glioma cells. Br. J. Cancer 90, 1069–1075 (2004).

    Article  CAS  Google Scholar 

  31. Wolf, B. B. et al. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94, 1683–1692 (1999).

    CAS  PubMed  Google Scholar 

  32. Bovia, F. et al. Efficient transduction of primary human B lymphocytes and nondividing myeloma B cells with HIV-1-derived lentiviral vectors. Blood 101, 1727–1733 (2003).

    Article  CAS  Google Scholar 

  33. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    Article  CAS  Google Scholar 

  34. Costes, S. V. et al. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86, 3993–4003 (2004).

    Article  CAS  Google Scholar 

  35. Uren, R. T. et al. Mitochondrial release of pro-apoptotic proteins: electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J. Biol. Chem. 280, 2266–2274 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (grant No. 310000-107526 and 310000-112078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Uwe Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and Supplementary Information (PDF 783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousefi, S., Perozzo, R., Schmid, I. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8, 1124–1132 (2006). https://doi.org/10.1038/ncb1482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1482

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing