Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-organization of interphase microtubule arrays in fission yeast

Abstract

Microtubule organization is key to eukaryotic cell structure and function. In most animal cells, interphase microtubules organize around the centrosome, the major microtubule organizing centre (MTOC). Interphase microtubules can also become organized independently of a centrosome, but how acentrosomal microtubules arrays form and whether they are functionally equivalent to centrosomal arrays remains poorly understood1,2. Here, we show that the interphase microtubule arrays of fission yeast cells can persist independently of nuclear-associated MTOCs, including the spindle pole body (SPB) — the centrosomal equivalent. By artificially enucleating cells, we show that arrays can form de novo (self-organize) without nuclear-associated MTOCs, but require the microtubule nucleator mod20–mbo1–mto1 (refs 35), the bundling factor ase1 (refs 6,7), and the kinesin klp2 (refs 8,9). Microtubule arrays in enucleated and nucleated cells are morphologically indistinguishable and similarly locate to the cellular axis and centre. By simultaneously tracking nuclear-independent and SPB-associated microtubule arrays within individual nucleated cells, we show that both define the cell centre with comparable precision. We propose that in fission yeast, nuclear-independent, self-organized, acentrosomal microtubule arrays are structurally and functionally equivalent to centrosomal arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleus-independent maintenance of interphase microtubule organization.
Figure 2: Self-organization of interphase microtubule arrays in enucleated yeast cells.
Figure 3: Precision in interphase microtubule array self-centring.
Figure 4: Schematic representation of a proposed model for self-organization of interphase microtubule arrays in fission yeast.

Similar content being viewed by others

References

  1. Dammermann, A., Desai, A. & Oegema, K. The minus end in sight. Curr. Biol. 13, R614–R624 (2003).

    Article  CAS  Google Scholar 

  2. Keating, T. J. & Borisy, G. G. Centrosomal and non-centrosomal microtubules. Biol. Cell 91, 321–329 (1999).

    Article  CAS  Google Scholar 

  3. Samejima, I., Lourenco, P. C., Snaith, H. A. & Sawin, K. E. Fission yeast mto2p regulates microtubule nucleation by the centrosomin-related protein mto1p. Mol. Biol. Cell 16, 3040–3051 (2005).

    Article  CAS  Google Scholar 

  4. Venkatram, S. et al. Identification and characterization of two novel proteins affecting fission yeast γ-tubulin complex function. Mol. Biol. Cell 15, 2287–2301 (2004).

    Article  CAS  Google Scholar 

  5. Sawin, K. E., Lourenco, P. C. & Snaith, H. A. Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr. Biol. 14, 763–775 (2004).

    Article  CAS  Google Scholar 

  6. Yamashita, A., Sato, M., Fujita, A., Yamamoto, M. & Toda, T. The roles of fission yeast ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol Cell 16, 1378–1395 (2005).

    Article  CAS  Google Scholar 

  7. Loiodice, I. et al. Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol. Biol Cell 16, 1756–1768 (2005).

    Article  CAS  Google Scholar 

  8. Carazo-Salas, R. E., Antony, C. & Nurse, P. The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science 309, 297–300 (2005).

    Article  CAS  Google Scholar 

  9. Troxell, C. L. et al. pkl1(+) and klp2(+): Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol. Biol Cell 12, 3476–3488 (2001).

    Article  CAS  Google Scholar 

  10. Hayles, J. & Nurse, P. A journey into space. Nature Rev. Mol. Cell Biol. 2, 647–656 (2001).

    Article  CAS  Google Scholar 

  11. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    Article  CAS  Google Scholar 

  12. Drummond, D. R. & Cross, R. A. Dynamics of interphase microtubules in Schizosaccharomyces pombe. Curr. Biol. 10, 766–775 (2000).

    Article  CAS  Google Scholar 

  13. Ding, R., West, R. R., Morphew, D. M., Oakley, B. R. & McIntosh, J. R. The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol. Biol. Cell 8, 1461–1479 (1997).

    Article  CAS  Google Scholar 

  14. Janson, M. E., Setty, T. G., Paoletti, A. & Tran, P. T. Efficient formation of bipolar microtubule bundles requires microtubule-bound γ-tubulin complexes. J. Cell Biol. 169, 297–308 (2005).

    Article  CAS  Google Scholar 

  15. Yamamoto, A., West, R. R., McIntosh, J. R. & Hiraoka, Y. A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J. Cell Biol. 145, 1233–1249 (1999).

    Article  CAS  Google Scholar 

  16. West, R. R., Vaisberg, E. V., Ding, R., Nurse, P. & McIntosh, J. R. cut11(+): A gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol. Biol. Cell 9, 2839–2855 (1998).

    Article  CAS  Google Scholar 

  17. Daga, R. R. & Chang, F. Dynamic positioning of the fission yeast cell division plane. Proc. Natl Acad. Sci. USA 102, 8228–8232 (2005).

    Article  CAS  Google Scholar 

  18. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    Article  CAS  Google Scholar 

  19. Behrens, R. & Nurse, P. Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton. J. Cell Biol. 157, 783–793 (2002).

    Article  CAS  Google Scholar 

  20. Zheng, L., Schwartz, C., Wee, L. & Oliferenko, S. The fission yeast transforming acidic coiled coil-related protein Mia1p/Alp7p is required for formation and maintenance of persistent microtubule-organizing centers at the nuclear envelope. Mol. Biol. Cell 17, 2212–2222 (2006).

    Article  CAS  Google Scholar 

  21. Mahoney, N. M., Goshima, G., Douglass, A. D. & Vale, R. D. Making microtubules and mitotic spindles in cells without functional centrosomes. Curr. Biol. 16, 564–569 (2006).

    Article  CAS  Google Scholar 

  22. Reilein, A., Yamada, S. & Nelson, W. J. Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J. Cell Biol. 171, 845–855 (2005).

    Article  CAS  Google Scholar 

  23. Malikov, V., Cytrynbaum, E. N., Kashina, A., Mogilner, A. & Rodionov, V. Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nature Cell Biol. 7, 1113–1118 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Piddini, R. Daga, M. Pardo, M. Godinho-Ferreira, B. Novák, T. Surrey, M. Sato, T. Toda, F. Uhlmann and T. Wittmann, and members of the Nurse lab for discussions; O. Niwa, K. Sawin, and T. Toda for materials; and E. Piddini, T. Surrey, M. Godinho-Ferreira, O. Rog, J. Hayles, S. Castagnetti, F. Uhlmann and T. Wittmann for reading the manuscript. R.E.C.S. was supported by International Human Frontier Science Program (HFSP) and Cancer Research UK postdoctoral fellowships and P.N. was supported by Cancer Research UK and the Rockefeller University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael E. Carazo-Salas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carazo-Salas, R., Nurse, P. Self-organization of interphase microtubule arrays in fission yeast. Nat Cell Biol 8, 1102–1107 (2006). https://doi.org/10.1038/ncb1479

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing