Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation

Abstract

Xenopus RINGO/Speedy (XRINGO) is a potent inducer of oocyte meiotic maturation that can directly activate Cdk1 and Cdk2. Here, we show that endogenous XRINGO protein accumulates transiently during meiosis I entry and then is downregulated. This tight regulation of XRINGO expression is the consequence of two interconnected mechanisms: processing and degradation. XRINGO processing involves recognition of at least three distinct phosphorylated recognition motifs by the SCFβTrCP ubiquitin ligase, followed by proteasome-mediated limited degradation, resulting in an amino-terminal XRINGO fragment. XRINGO processing is directly stimulated by several kinases, including protein kinase A and glycogen synthase kinase-3β, and may contribute to the maintenance of G2 arrest. On the other hand, XRINGO degradation after meiosis I is mediated by the ubiquitin ligase Siah-2, which probably requires phosphorylation of XRINGO on Ser 243 and may be important for the omission of S phase at the meiosis-I–meiosis-II transition in Xenopus oocytes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of XRINGO during meiotic maturation is regulated by protein processing and degradation.
Figure 2: SCFβTrCP ubiquitin ligase regulates XRINGO processing.
Figure 3: The DSGXXS motif of XRINGO acts as a major phosphodegron for βTrCP recognition.
Figure 4: Direct involvement of PKA- and GSK-3β-mediated phosphorylation in XRINGO processing.
Figure 5: XRINGO is degraded by the UPS pathway.
Figure 6: Siah-2 is the ubiquitin ligase responsible for XRINGO degradation.
Figure 7: XRINGO degradation involves Ser 243 phosphorylation and is required to avoid DNA replication during oocyte maturation.
Figure 8: XRINGO displays properties of an S-phase promoting factor.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  Google Scholar 

  2. Reed, S. I. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nature Rev. Mol. Cell Biol. 4, 855–864 (2003).

    Article  CAS  Google Scholar 

  3. Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  Google Scholar 

  4. Rape, M. & Jentsch, S. Taking a bite: proteasomal protein processing. Nature Cell Biol. 4, E113–E116 (2002).

    Article  CAS  Google Scholar 

  5. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  Google Scholar 

  6. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  Google Scholar 

  7. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  Google Scholar 

  8. Nebreda, A. R. & Ferby, I. Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol. 12, 666–675 (2000).

    Article  CAS  Google Scholar 

  9. Castro, A. et al. Cyclin B/cdc2 induces c-Mos stability by direct phosphorylation in Xenopus oocytes. Mol. Biol. Cell 12, 2660–2671 (2001).

    Article  CAS  Google Scholar 

  10. Hochegger, H. et al. New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development 128, 3795–3807 (2001).

    CAS  PubMed  Google Scholar 

  11. Mendez, R., Barnard, D. & Richter, J. D. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 21, 1833–1844 (2002).

    Article  CAS  Google Scholar 

  12. Ferby, I., Blazquez, M., Palmer, A., Eritja, R. & Nebreda, A. R. A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev. 13, 2177–2189 (1999).

    Article  CAS  Google Scholar 

  13. Lenormand, J. L., Dellinger, R. W., Knudsen, K. E., Subramani, S. & Donoghue, D. J. Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J. 18, 1869–1877 (1999).

    Article  CAS  Google Scholar 

  14. Karaiskou, A. et al. Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J. Biol. Chem. 276, 36028–36034 (2001).

    Article  CAS  Google Scholar 

  15. Porter, L. A. et al. Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J. Cell Biol. 157, 357–366 (2002).

    Article  CAS  Google Scholar 

  16. Dinarina, A. et al. Characterization of a new family of cyclin-dependent kinase activators. Biochem. J. 386, 349–355 (2005).

    Article  CAS  Google Scholar 

  17. Cheng, A., Gerry, S., Kaldis, P. & Solomon, M. J. Biochemical characterization of Cdk2-Speedy/Ringo A2. BMC Biochem. 6, 19 (2005).

    Article  Google Scholar 

  18. Nebreda, A. R. CDK activation by non-cyclin proteins. Curr. Opin. Cell Biol. 18, 192–198 (2006).

    Article  CAS  Google Scholar 

  19. Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. & Vande Woude, G. F. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–525 (1988).

    Article  CAS  Google Scholar 

  20. Perez, L. H., Antonio, C., Flament, S., Vernos, I. & Nebreda, A. R. Xkid chromokinesin is required for the meiosis I to meiosis II transition in Xenopus laevis oocytes. Nature Cell Biol. 4, 737–742 (2002).

    Article  CAS  Google Scholar 

  21. Ciechanover, A. et al. Mechanisms of ubiquitin-mediated, limited processing of the NF-κB precursor protein p105. Biochimie 83, 341–349 (2001).

    Article  CAS  Google Scholar 

  22. Price, M. A. & Kalderon, D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108, 823–835 (2002).

    Article  CAS  Google Scholar 

  23. Jin, J. et al. SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 17, 3062–3074 (2003).

    Article  CAS  Google Scholar 

  24. Della, N. G., Bowtell, D. D. & Beck, F. Expression of Siah-2, a vertebrate homologue of Drosophila sina, in germ cells of the mouse ovary and testis. Cell Tissue Res. 279, 411–419 (1995).

    Article  CAS  Google Scholar 

  25. Moore, J. D., Kirk, J. A. & Hunt, T. Unmasking the S-phase-promoting potential of cyclin B1. Science 300, 987–990 (2003).

    Article  CAS  Google Scholar 

  26. Padmanabhan, K. & Richter, J. D. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev. 20, 199–209 (2006).

    Article  CAS  Google Scholar 

  27. Kanemori, Y., Uto, K. & Sagata, N. β-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc. Natl Acad. Sci. USA 102, 6279–6284 (2005).

    Article  CAS  Google Scholar 

  28. Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCF β-TrCP. Proc. Natl Acad. Sci. USA 101, 4419–4424 (2004).

    Article  CAS  Google Scholar 

  29. Watanabe, N. et al. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc. Natl Acad. Sci. USA 102, 11663–11668 (2005).

    Article  CAS  Google Scholar 

  30. Suzuki, H. et al. Homodimer of two F-box proteins βTrCP1 or βTrCP2 binds to IκBα for signal-dependent ubiquitination. J. Biol. Chem. 275, 2877–2884 (2000).

    Article  CAS  Google Scholar 

  31. Gutierrez, G. J. & Ronai, Z. Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem. Sci. 31, 324–332 (2006).

    Article  CAS  Google Scholar 

  32. Polekhina, G. et al. Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-α signaling. Nature Struct. Biol. 9, 68–75 (2002).

    Article  CAS  Google Scholar 

  33. Rempel, R. E., Sleight, S. B. & Maller, J. L. Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J. Biol. Chem. 270, 6843–6855 (1995).

    Article  CAS  Google Scholar 

  34. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  Google Scholar 

  35. Lorca, T. et al. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17, 3565–3575 (1998).

    Article  CAS  Google Scholar 

  36. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    Article  CAS  Google Scholar 

  37. Schmitt, A. & Nebreda, A. R. Inhibition of Xenopus oocyte meiotic maturation by catalytically inactive protein kinase A. Proc. Natl Acad. Sci. USA 99, 4361–4366 (2002).

    Article  CAS  Google Scholar 

  38. Newport, J. W. & Kirschner, M. W. Regulation of the cell cycle during early Xenopus development. Cell 37, 731–742 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Moore and T. Hunt (Cancer Research UK Clare Hall Laboratories, South Mimms, UK) for providing advice and reagents to perform DNA replication assays in cyclin-E-depleted extracts; E. Pogge von Strandmann (University of Cologne, Germany) for sending us the Xenopus Siah-2 cDNA; and O. Coux (CNRS-CRBM, France) for providing E1 enzymes, helpful suggestions and for critically reading the manuscript. A.R.N. acknowledges the grant BFU2004-03566 from the Ministerio de Educacion y Ciencia of Spain.

Author information

Authors and Affiliations

Authors

Contributions

G.J.G. performed all the experiments presented in this manuscript; most of the work was done during his PhD at the EMBL. A.V. critically contributed to the characterization of the PKA phosphorylation sites on XRINGO. I.F. and G.S. generated some XRINGO mutants and the 9260 and 9261 rabbit antisera. A.C., T.L. and Z.R. provided essential tools to study the regulation of XRINGO by SCFβTrCP and Siah-2. A.R.N. participated in the design of the experiments and the interpretation of the results and wrote the manuscript together with G.J.G.

Corresponding authors

Correspondence to Gustavo J. Gutierrez or Angel R. Nebreda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and Supplementary Information (PDF 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, G., Vögtlin, A., Castro, A. et al. Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nat Cell Biol 8, 1084–1094 (2006). https://doi.org/10.1038/ncb1472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing