Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP

Abstract

FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity. Deubiquitination of FOXO requires the deubiquitinating enzyme USP7/HAUSP (herpesvirus-associated ubiquitin-specific protease), which interacts with and deubiquitinates FOXO in response to oxidative stress. Oxidative stress-induced ubiquitination and deubiquitination by USP7 do not influence FOXO protein half-life. However, USP7 does negatively regulate FOXO transcriptional activity towards endogenous promoters. Our results demonstrate a novel mechanism of FOXO regulation and indicate that USP7 has an important role in regulating FOXO-mediated stress responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrogen peroxide induces monoubiquitination of FOXO4.
Figure 2: Effects of monoubiquitination on FOXO4.
Figure 3: USP7 interacts with and deubiquitinates FOXO4.
Figure 4: FOXO4 monoubiquitination precedes USP7 binding to FOXO4.
Figure 5: USP7 regulates FOXO transcriptional activity.
Figure 6: A model illustrating how oxidative stress regulates FOXO transcriptional activity through ubiquitination and acetylation.

Similar content being viewed by others

References

  1. Katoh, M. Human FOX gene family (Review). Int. J. Oncol. 25, 1495–1500 (2004).

    CAS  Google Scholar 

  2. Tran, H. et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002).

    Article  CAS  Google Scholar 

  3. Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).

    Article  CAS  Google Scholar 

  4. Burgering, B. M. & Kops, G. J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 27, 352–360 (2002).

    Article  CAS  Google Scholar 

  5. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  6. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  Google Scholar 

  7. Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci STKE 2003, RE5 (2003).

    PubMed  Google Scholar 

  8. De Ruiter, N. D., Burgering, B. M. & Bos, J. L. Regulation of the Forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol. Cell. Biol. 21, 8225–8235 (2001).

    Article  CAS  Google Scholar 

  9. Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    Article  CAS  Google Scholar 

  10. Wang, M. C., Bohmann, D. & Jasper, H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121, 115–125 (2005).

    Article  CAS  Google Scholar 

  11. Oh, S. W. et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl Acad. Sci. USA 102, 4494–4499 (2005).

    Article  CAS  Google Scholar 

  12. Nanji, M., Hopper, N. A. & Gems, D. LET-60 RAS modulates effects of insulin/IGF-1 signaling on development and aging in Caenorhabditis elegans. Aging Cell 4, 235–245 (2005).

    Article  CAS  Google Scholar 

  13. Mahmud, D. L. et al. Phosphorylation of forkhead transcription factors by erythropoietin and stem cell factor prevents acetylation and their interaction with coactivator p300 in erythroid progenitor cells. Oncogene 21, 1556–1562 (2002).

    Article  CAS  Google Scholar 

  14. Fukuoka, M. et al. Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int. J. Mol. Med. 12, 503–508 (2003).

    CAS  PubMed  Google Scholar 

  15. van der Horst, A. et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem. 279, 28873–28879 (2004).

    Article  CAS  Google Scholar 

  16. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  Google Scholar 

  17. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  Google Scholar 

  18. Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101, 10042–10047 (2004).

    Article  CAS  Google Scholar 

  19. Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    Article  CAS  Google Scholar 

  20. Matsuzaki, H., Daitoku, H., Hatta, M., Tanaka, K. & Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl Acad. Sci. USA 100, 11285–11290 (2003).

    Article  CAS  Google Scholar 

  21. Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003).

    Article  CAS  Google Scholar 

  22. Aoki, M., Jiang, H. & Vogt, P. K. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl Acad. Sci. USA 101, 13613–13617 (2004).

    Article  CAS  Google Scholar 

  23. Onishi, Y. et al. Identification of mono-ubiquitinated LDH-A in skeletal muscle cells exposed to oxidative stress. Biochem. Biophys. Res. Commun. 336, 799–806 (2005).

    Article  CAS  Google Scholar 

  24. Cao, C. et al. Ubiquitination and degradation of the Arg tyrosine kinase is regulated by oxidative stress. Oncogene 24, 2433–2440 (2005).

    Article  CAS  Google Scholar 

  25. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  26. Kobayashi, Y. et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int. J. Mol. Med. 16, 237–243 (2005).

    CAS  PubMed  Google Scholar 

  27. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  Google Scholar 

  28. Sigismund, S., Polo, S. & Di Fiore, P. P. Signaling through monoubiquitination. Curr. Top. Microbiol. Immunol. 286, 149–185 (2004).

    CAS  PubMed  Google Scholar 

  29. Dikic, I. Mechanisms controlling EGF receptor endocytosis and degradation. Biochem. Soc. Trans. 31, 1178–1181 (2003).

    Article  CAS  Google Scholar 

  30. Fang, D. & Kerppola, T. K. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc. Natl Acad. Sci. USA 101, 14782–14787 (2004).

    Article  CAS  Google Scholar 

  31. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biol. 5, 461–466 (2003).

    Article  CAS  Google Scholar 

  32. Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000).

    Article  CAS  Google Scholar 

  33. Colland, F. et al. Functional proteomics mapping of a human signaling pathway. Genome Res. 14, 1324–1332 (2004).

    Article  CAS  Google Scholar 

  34. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    Article  CAS  Google Scholar 

  35. Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13, 879–886 (2004).

    Article  CAS  Google Scholar 

  36. Meulmeester, E. et al. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol. Cell 18, 565–576 (2005).

    Article  CAS  Google Scholar 

  37. van der Knaap, J. A. et al. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol. Cell 17, 695–707 (2005).

    Article  CAS  Google Scholar 

  38. Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    Article  CAS  Google Scholar 

  39. Yin, L., Krantz, B., Russell, N. S., Deshpande, S. & Wilkinson, K. D. Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation. Biochemistry 39, 10001–10010 (2000).

    Article  CAS  Google Scholar 

  40. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  Google Scholar 

  41. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  Google Scholar 

  42. Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell. Biol. 22, 2025–2036 (2002).

    Article  CAS  Google Scholar 

  43. Mamillapalli, R. et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr. Biol. 11, 263–267 (2001).

    Article  CAS  Google Scholar 

  44. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  Google Scholar 

  45. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  Google Scholar 

  46. Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  Google Scholar 

  47. Medema, R. H., Herrera, R. E., Lam, F. & Weinberg, R. A. Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc. Natl Acad. Sci. USA 92, 6289–6293 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.L. Bos and L. Price for critically reading the manuscript; the members of the Bos and Burgering labs for helpful discussions; T. Kerppola., J. Rodriguez, A. Borodovsky and D. Bohmann for kindly providing DNA constructs; and B. Kumar and J. van der Knaap for supplying purified USP7. The authors also acknowledge H. Ovaa for providing the HA–ubiquitin probe and Hybrigenics staff for their contributions. This work was supported by grants from the Dutch Cancer Society (KWF, UU-2001-2438) to A.v.d.H.; from The Netherlands organization for scientific research (NWO, Zon-MW 906-02-041) to M.M.M.; from the Cancer Genomics center to N.v.d.B.; and from the European Commission Transfog Consortium (LSHC-CT-2004-503438) to A.B.B.

Author information

Authors and Affiliations

Authors

Contributions

A.v.d.H., A.M.M.d.V-S. and B.M.T.B. conceived and designed the expermiments. A.v.d.H., A.M.M.d.V-S., A.B.B., M.H.v.T. and N.v.d.B performed the experiments. F.C. and M.M.M. contributed essential materials. A.v.d.H., A.M.M.d.V-S. and B.M.T.B analysed the data. A.v.d.H. and B.M.T.B wrote the paper.

Corresponding author

Correspondence to Boudewijn M.T. Burgering.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplemantary Figures S1, S2, S3, S4, S5 and S6 (PDF 5465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Horst, A., de Vries-Smits, A., Brenkman, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8, 1064–1073 (2006). https://doi.org/10.1038/ncb1469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing