Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Critical role for Daxx in regulating Mdm2

Abstract

The tumour suppressor p53 induces apoptosis or cell-cycle arrest in response to genotoxic and other stresses1,2. In unstressed cells, the anti-proliferative effects of p53 are restrained by mouse double minute 2 (Mdm2), a ubiquitin ligase (E3) that promotes p53 ubiquitination and degradation3. Mdm2 also mediates its own degradation through auto-ubiquitination. It is unclear how the cis- and trans-E3 activities of Mdm2, which have opposing effects on cell fate, are differentially regulated. Here, we show that death domain-associated protein (Daxx)4 is required for Mdm2 stability. Downregulation of Daxx decreases Mdm2 levels, whereas overexpression of Daxx strongly stabilizes Mdm2. Daxx simultaneously binds to Mdm2 and the deubiquitinase Hausp, and it mediates the stabilizing effect of Hausp on Mdm2. In addition, Daxx enhances the intrinsic E3 activity of Mdm2 towards p53. On DNA damage, Daxx dissociates from Mdm2, which correlates with Mdm2 self-degradation. These findings reveal that Daxx modulates the function of Mdm2 at multiple levels and suggest that the disruption of the Mdm2–Daxx interaction may be important for p53 activation in response to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Daxx controls the stability of p53 and Mdm2.
Figure 2: Daxx physically interacts with Mdm2 and enhances Mdm2-dependent p53 ubiquitination.
Figure 3: Daxx associates with Hausp.
Figure 4: Daxx enhances the interaction between Hausp and Mdm2.
Figure 5: DNA-damage regulates the interaction of Daxx with Mdm2 and Hausp.

Similar content being viewed by others

References

  1. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  2. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  3. Michael, D. & Oren, M. The p53–Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13, 49–58 (2003).

    Article  CAS  Google Scholar 

  4. Yang, X., Khosravi-Far, R., Chang, H. Y. & Baltimore, D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067–1076 (1997).

    Article  CAS  Google Scholar 

  5. Chang, H. Y., Nishitoh, H., Yang, X., Ichijo, H. & Baltimore, D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281, 1860–1863 (1998).

    Article  CAS  Google Scholar 

  6. Perlman, R., Schiemann, W. P., Brooks, M. W., Lodish, H. F. & Weinberg, R. A. TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biol. 3, 708–714 (2001).

    Article  CAS  Google Scholar 

  7. Zhong, S. et al. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J. Exp. Med. 191, 631–640 (2000).

    Article  CAS  Google Scholar 

  8. Salomoni, P. & Khelifi, A. F. Daxx: death or survival protein? Trends Cell Biol. 16 97–104 (2006).

    Article  CAS  Google Scholar 

  9. Michaelson, J. S., Bader, D., Kuo, F., Kozak, C. & Leder, P. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev. 13, 1918–1923 (1999).

    Article  CAS  Google Scholar 

  10. Zhao, L. Y. et al. Negative regulation of p53 functions by Daxx and the involvement of MDM2. J. Biol. Chem. 279, 50566–50579 (2004).

    Article  CAS  Google Scholar 

  11. Gostissa, M. et al. The transcriptional repressor hDaxx potentiates p53-dependent apoptosis. J. Biol. Chem. 279, 48013–48023 (2004).

    Article  CAS  Google Scholar 

  12. Kim, E. J., Park, J. S. & Um, S. J. Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML. Nucleic Acids Res. 31, 5356–5367 (2003).

    Article  CAS  Google Scholar 

  13. Fakharzadeh, S. S., Trusko, S. P. & George, D. L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10, 1565–1569 (1991).

    Article  CAS  Google Scholar 

  14. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  Google Scholar 

  15. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  Google Scholar 

  16. Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X. & Ronai, Z. Mdm2 association with p53 targets its ubiquitination. Oncogene 17, 2543–2547 (1998).

    Article  CAS  Google Scholar 

  17. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  Google Scholar 

  18. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    Article  CAS  Google Scholar 

  19. Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19, 1473–1476 (2000).

    Article  CAS  Google Scholar 

  20. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    Article  CAS  Google Scholar 

  21. Tang, J. et al. A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J. Biol. Chem. 279, 20369–20377 (2004).

    Article  CAS  Google Scholar 

  22. Everett, R. D. et al. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J. 16, 1519–1530 (1997).

    Article  CAS  Google Scholar 

  23. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    Article  CAS  Google Scholar 

  24. Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, doi: 10.1038/nature02501 (2004).

  25. Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13, 879–886 (2004).

    Article  CAS  Google Scholar 

  26. Stommel, J. M. & Wahl, G. M. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 23, 1547–1556 (2004).

    Article  CAS  Google Scholar 

  27. Meulmeester, E. et al. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol. Cell 18, 565–576 (2005).

    Article  CAS  Google Scholar 

  28. Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15, 1067–1077 (2001).

    Article  CAS  Google Scholar 

  29. Momand, J., Jung, D., Wilczynski, S. & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Leder for wild type and Daxx−/− ES cells, H. Wu and Y. Xiong for p53−/− Mdm2−/− MEF cells, W. Gu for Hausp cDNA, G. Maul and B. Vogelstein for reagents, and D. George and S. Fuchs for advice. We also thank the Proteomic Core Facility of the Abramson Cancer Center at the University of Pennsylvania for mass spectrometry analysis and the National Cell Culture Center for providing HeLa S3 cells. J.T. was a postdoctoral appointee of an National Cancer Institute training grant (T32CA09140). X.Y. is supported by National Institutes of Health (NIH) grants (CA88868 and GM60911) and a Leukemia & Lymphoma Society Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

J.T. L.Q. And X.Y conceived and designed the experiments, analysed data and wrote the paper. J.T. and L.Q. performed the experiments. J.Z. and J.M. performed ES cell culture. W.W. and W.E. contributed reagents and performed apoptosis analysis. Y.Y.D. performed real-time RT−PCR.

Corresponding author

Correspondence to Xiaolu Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 1023 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Qu, LK., Zhang, J. et al. Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8, 855–862 (2006). https://doi.org/10.1038/ncb1442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing