Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway

An Erratum to this article was published on 01 September 2006

Abstract

Recent evidence supports a role for EphB receptor tyrosine kinases as tumour suppressors in colorectal and prostate cancer. However, it is unclear how these receptors inhibit cancer cell tumorigenicity — an activity that is highly unusual for a family of receptor tyrosine kinases. Here, we report that the EphB4 receptor can behave as a tumour suppressor in a mouse xenograft model of breast cancer when stimulated by its ligand, ephrin-B2. In breast cancer cells, EphB4 activates an antioncogenic pathway involving Abl family tyrosine kinases and the Crk adaptor protein. This Abl–Crk pathway inhibits breast cancer cell viability and proliferation in addition to motility and invasion, and also downregulates the pro-invasive matrix metalloprotease, MMP-2. Consistent with these effects, EphB4 and the Abl–Crk pathway are constitutively active in non-transformed mammary epithelial cells. These findings identify a novel Eph receptor signalling pathway with tumour-suppressor activity and predict that therapeutic intervention to activate EphB4 signalling will inhibit tumour progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ephrin-B2 Fc treatment inhibits tumour growth in a xenograft model.
Figure 2: Treatment of breast cancer cells with ephrin-B2 Fc enhances Crk tyrosine phosphorylation.
Figure 3: Treatment of breast cancer cells with ephrin-B2 Fc increases Crk phosphorylation on Tyr 221 in an Abl-dependent manner.
Figure 4: Inhibition of cell proliferation and survival by ephrin-B2 Fc requires Abl kinase activity and Crk adaptor function.
Figure 5: Treatment with ephrin-B2 Fc inhibits breast cancer cell migration and invasion and MMP-2 expression.
Figure 6: Inhibition of cell migration and MMP-2 expression by ephrin-B2 Fc requires Abl kinase activity and Crk adaptor function.
Figure 7: Inhibition of spheroid and tumour growth by ephrin-B2 Fc requires Abl kinase activity.
Figure 8: Inhibition of endogenous ephrin-B2 binding to EphB4 in non-transformed mammary epithelial cells.

Similar content being viewed by others

References

  1. Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130 (2005).

    Article  CAS  Google Scholar 

  2. Jubb, A. M. et al. EphB2 is a prognostic factor in colorectal cancer. Clin. Cancer Res. 11, 5181–5187 (2005).

    Article  CAS  Google Scholar 

  3. Guo, D. L. et al. Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis 27, 454–464 (2006).

    Article  CAS  Google Scholar 

  4. Huusko, P. et al. Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nature Genet. 36, 979–983 (2004).

    Article  CAS  Google Scholar 

  5. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell Biol. 6, 462–475 (2005).

    Article  CAS  Google Scholar 

  6. Noblitt, L. W. et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther. 11, 757–766 (2004).

    Article  CAS  Google Scholar 

  7. Zelinski, D. P., Zantek, N. D., Stewart, J. C., Irizarry, A. R. & Kinch, M. S. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 61, 2301–2306 (2001).

    CAS  PubMed  Google Scholar 

  8. Liu, W. et al. Effects of overexpression of ephrin-B2 on tumour growth in human colorectal cancer. Br. J. Cancer 90, 1620–1626 (2004).

    Article  CAS  Google Scholar 

  9. Berclaz, G. et al. Expression of the receptor protein tyrosine kinase myk-1–htk in normal and malignant mammary epithelium. Biochem. Biophys. Res. Commun. 226, 869–875 (1996).

    Article  CAS  Google Scholar 

  10. Liu, W. et al. Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer 94, 934–939 (2002).

    Article  CAS  Google Scholar 

  11. Wu, Q. et al. Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol. Oncol. Res. 10, 26–33 (2004).

    Article  CAS  Google Scholar 

  12. Xia, G. et al. Up-regulation of EphB4 in mesothelioma and its biological significance. Clin. Cancer Res. 11, 4305–4315 (2005).

    Article  CAS  Google Scholar 

  13. Noren, N. K., Lu, M., Freeman, A. L., Koolpe, M. & Pasquale, E. B. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc. Natl Acad. Sci. USA 101, 5583–5588 (2004).

    Article  CAS  Google Scholar 

  14. Nikolova, Z., Djonov, V., Zuercher, G., Andres, A. C. & Ziemiecki, A. Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J. Cell Sci. 111, 2741–2751 (1998).

    CAS  PubMed  Google Scholar 

  15. Sellappan, S. et al. Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res. 64, 3479–3485 (2004).

    Article  CAS  Google Scholar 

  16. Feller, S. M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20, 6348–6371 (2001).

    Article  CAS  Google Scholar 

  17. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  Google Scholar 

  18. Chodniewicz, D. & Klemke, R. L. Regulation of integrin-mediated cellular responses through assembly of a CAS–Crk scaffold. Biochim. Biophys. Acta 1692, 63–76 (2004).

    Article  CAS  Google Scholar 

  19. Spencer, K. S., Graus-Porta, D., Leng, J., Hynes, N. E. & Klemke, R. L. ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J. Cell Biol. 148, 385–397 (2000).

    Article  CAS  Google Scholar 

  20. Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003).

    Article  CAS  Google Scholar 

  21. Duffy, M. J., Maguire, T. M., Hill, A., McDermott, E. & O'Higgins, N. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2, 252–257 (2000).

    Article  CAS  Google Scholar 

  22. Koolpe, M., Burgess, R., Dail, M. & Pasquale, E. B. EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J. Biol. Chem. 280, 17301–17311 (2005).

    Article  CAS  Google Scholar 

  23. Lamorte, L., Royal, I., Naujokas, M. & Park, M. Crk adapter proteins promote an epithelial-mesenchymal-like transition and are required for HGF-mediated cell spreading and breakdown of epithelial adherens junctions. Mol. Biol. Cell 13, 1449–1461 (2002).

    Article  CAS  Google Scholar 

  24. Kain, K. H. & Klemke, R. L. Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J. Biol. Chem. 276, 16185–16192 (2001).

    Article  CAS  Google Scholar 

  25. Kain, K. H., Gooch, S. & Klemke, R. L. Cytoplasmic c-Abl provides a molecular 'Rheostat' controlling carcinoma cell survival and invasion. Oncogene 22, 6071–6080 (2003).

    Article  CAS  Google Scholar 

  26. Frasca, F., Vigneri, P., Vella, V., Vigneri, R. & Wang, J. Y. Tyrosine kinase inhibitor STI571 enhances thyroid cancer cell motile response to hepatocyte growth factor. Oncogene 20, 3845–3856 (2001).

    Article  CAS  Google Scholar 

  27. Woodring, P. J., Hunter, T. & Wang, J. Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J. Cell Sci. 116, 2613–2626 (2003).

    Article  CAS  Google Scholar 

  28. Truong, T., Sun, G., Doorly, M., Wang, J. Y. & Schwartz, M. A. Modulation of DNA damage-induced apoptosis by cell adhesion is independently mediated by p53 and c-Abl. Proc. Natl Acad. Sci. U S A 100, 10281–10286 (2003).

    Article  CAS  Google Scholar 

  29. Harbott, L. K. & Nobes, C. D. A key role for Abl family kinases in EphA receptor-mediated growth cone collapse. Mol. Cell. Neurosci. 30, 1–11 (2005).

    Article  CAS  Google Scholar 

  30. Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A. & Pendergast, A. M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400–2411 (1999).

    Article  CAS  Google Scholar 

  31. Furstoss, O. et al. c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. EMBO J. 21, 514–524 (2002).

    Article  CAS  Google Scholar 

  32. Zukerberg, L. R. et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646 (2000).

    Article  CAS  Google Scholar 

  33. Moresco, E. M., Donaldson, S., Williamson, A. & Koleske, A. J. Integrin-mediated dendrite branch maintenance requires Abelson (Abl) family kinases. J. Neurosci. 25, 6105–6118 (2005).

    Article  CAS  Google Scholar 

  34. Yu, H. H., Zisch, A. H., Dodelet, V. C. & Pasquale, E. B. Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene 20, 3995–4006 (2001).

    Article  CAS  Google Scholar 

  35. Zou, X. & Calame, K. Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J. Biol. Chem. 274, 18141–18144 (1999).

    Article  CAS  Google Scholar 

  36. Hantschel, O. & Superti-Furga, G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nature Rev. Mol. Cell Biol. 5, 33–44 (2004).

    Article  CAS  Google Scholar 

  37. Plattner, R. & Pendergast, A. M. Activation and signaling of the Abl tyrosine kinase: bidirectional link with phosphoinositide signaling. Cell Cycle 2, 273–274 (2003).

    Article  CAS  Google Scholar 

  38. Sini, P., Cannas, A., Koleske, A. J., Di Fiore, P. P. & Scita, G. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nature Cell Biol. 6, 268–274 (2004).

    Article  CAS  Google Scholar 

  39. Takino, T. et al. Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration. J. Cell Sci. 116, 3145–3155 (2003).

    Article  CAS  Google Scholar 

  40. Shin, I., Kim, S., Song, H., Kim, H. R. & Moon, A. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J. Biol. Chem. 280, 14675–14683 (2005).

    Article  CAS  Google Scholar 

  41. Yang, C., Liu, Y., Leskow, F. C., Weaver, V. M. & Kazanietz, M. G. Rac-GAP-dependent inhibition of breast cancer cell proliferation by β2-chimerin. J. Biol. Chem. 280, 24363–24370 (2005).

    Article  CAS  Google Scholar 

  42. Depaepe, V. et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435, 1244–1250 (2005).

    Article  CAS  Google Scholar 

  43. Miao, H. et al. Activation of EphA receptor tyrosine kinase inhibits the Ras–MAPK pathway. Nature Cell Biol. 3, 527–530 (2001).

    Article  CAS  Google Scholar 

  44. Dohn, M., Jiang, J. Y. & Chen, X. B. Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20, 6503–6515 (2001).

    Article  CAS  Google Scholar 

  45. Lawrenson, I. D. et al. Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J. Cell Sci. 115, 1059–1072 (2002).

    CAS  PubMed  Google Scholar 

  46. Nagashima, K. et al. Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. Mol. Biol. Cell 13, 4231–4242 (2002).

    Article  CAS  Google Scholar 

  47. Barrios, A. et al. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr. Biol. 13, 1571–82 (2003).

    Article  CAS  Google Scholar 

  48. Miao, H. et al. EphA kinase activation regulates HGF-induced epithelial branching morphogenesis. J. Cell Biol. 162, 1281–1292 (2003).

    Article  CAS  Google Scholar 

  49. Xia, G. et al. EphB4 expression and biological significance in prostate cancer. Cancer Res. 65, 4623–4632 (2005).

    Article  CAS  Google Scholar 

  50. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med. 2, 561–566 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Y. J. Wang for the Abl constructs, including the Gleevec-insensitive mutant AblTI, Novartis for the Gleevec, K. Vuori for the Crk constructs, D.T. Scaddon for pcDNA3–EphB4, the high throughput cell analysis facility of The Burnham Institute, D. Rozanov and A. Howes for technical advice and C. Bourgin and E. Ruoslahti for comments on the manuscript. This work was supported by University of California Breast Cancer Program Grants (E.B.P.), National Institute of Health Grants (E.B.P.) and a Department of Defense postdoctoral fellowship (N.K.N).

Author information

Authors and Affiliations

Authors

Contributions

G.F. and C.A.H. contributed the MDA-MB-435c clonal cell line and helpful disscussions. N.K.N. performed the experiments and N.K.N. and E.B.P. designed the project and performed the data analysis.

Corresponding author

Correspondence to Elena B. Pasquale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure S1, S2, S3, S4, S5 and Supplementary Methods (PDF 490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noren, N., Foos, G., Hauser, C. et al. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway. Nat Cell Biol 8, 815–825 (2006). https://doi.org/10.1038/ncb1438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing