Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p

Abstract

Genome stability necessitates a mechanism to protect the termini of linear chromosomes from inappropriate degradation or recombination1,2. In many species this protection depends on 'capping' proteins that bind telomeric DNA3,4. The budding yeast Cdc13p binds single-stranded telomeric sequences5,6, prevents lethal degradation of chromosome ends7,8 and regulates telomere extension by telomerase5,9. Two Cdc13-interacting proteins, Stn1p and Ten1p, are also required for viability and telomere length regulation10,11. It has been proposed that Cdc13p DNA binding directs a Cdc13p–Stn1p–Ten1p complex to telomeres to mediate end protection12. However, the functional significance of these protein interactions, and their respective roles in maintaining telomere integrity, remain undefined. Here, we show that co-overexpressing TEN1 with a truncated form of STN1 efficiently bypasses the essential role of CDC13. We further show that this truncated Stn1p binds directly to Pol12p, a polymerase α-primase regulatory subunit, and that Pol12 activity is required for CDC13 bypass. Thus, Stn1p and Ten1p control a Cdc13p-independent telomere capping mechanism that is coupled to the conventional DNA replication machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Separable domains of Stn1p interact with Cdc13p and Ten1p.
Figure 2: Stn11–186–Ten1p overproduction makes CDC13 dispensable.
Figure 3: Telomerase requirement for STN1–TEN1-bypass.
Figure 4: A role for DNA replication in alternative capping.

Similar content being viewed by others

References

  1. Muller, H. J. The remaking of chromosomes. The Collecting Net 13, 181–195 (1938).

    Google Scholar 

  2. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 41, 234–282 (1941).

    Google Scholar 

  3. Theobald, D. L., Cervantes, R. B., Lundblad, V. & Wuttke, D. S. Homology among telomeric end-protection proteins. Structure 11, 1049–1050 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Ferreira, M. G., Miller, K. M. & Cooper, J. P. Indecent exposure: when telomeres become uncapped. Mol. Cell 13, 7–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, J. J. & Zakian, V. A. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl Acad. Sci. USA 93, 13760–13765 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell Biol. 15, 6128–6138 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lydall, D. & Weinert, T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270, 1488–1491 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Grandin, N., Reed, S. I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Grandin, N., Damon, C. & Charbonneau, M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173–1183 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Boeke, J. D., LaCroute, F. & Fink, G. R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Taggart, A. K., Teng, S. C. & Zakian, V. A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Singer, M. S. & Gottschling, D. E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Peterson, S. E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet. 27, 64–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Fisher, T. S., Taggart, A. K. & Zakian, V. A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nature Struct. Mol. Biol. 11, 1198–1205 (2004).

    Article  CAS  Google Scholar 

  19. Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143–152 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Teng, S. C. & Zakian, V. A. Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 8083–8093 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaina, B. Mechanisms and consequences of methylating agent-induced SCEs and chromosomal aberrations: a long road traveled and still a far way to go. Cytogenet Genome Res. 104, 77–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Koc, A., Wheeler, L. J., Mathews, C. K. & Merrill, G. F. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J. Biol. Chem. 279, 223–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Miller, K. M. & Cooper, J. P. The telomere protein Taz1 is required to prevent and repair genomic DNA breaks. Mol. Cell 11, 303–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Grossi, S., Puglisi, A., Dmitriev, P. V., Lopes, M. & Shore, D. Pol12, the B subunit of DNA polymerase α, functions in both telomere capping and length regulation. Genes Dev. 18, 992–1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qi, H. & Zakian, V. A. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated est1 protein. Genes Dev. 14, 1777–1788 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chandra, A., Hughes, T. R., Nugent, C. I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15, 404–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lundblad, V. & Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Dionne, I. & Wellinger, R. J. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc. Natl Acad. Sci. USA 93, 13902–13907 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bertuch, A. A. & Lundblad, V. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell Biol. 23, 8202–8215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate helpful input from J. Bachant, A. Grosovsky, D. Lydall, M. Petreaca, R. Wellinger and members of the Nugent laboratory. We thank D. Gottschling, S. Elledge and V. Lundblad for sharing strains and plasmids. We also thank D. Lydall and R. Wellinger for communicating results before publication. This work was funded by a grant from the National Institutes of Health (CIN).

Author information

Authors and Affiliations

Authors

Contributions

R.C.P. made the initial bypass observations and performed the two-hybrid analysis and Southern blots. H.C. analysed ssTG and performed the Pol12-related experiments. R.P., P.C. and H.A.E. contributed experiments for cdc13-1 suppression. H.A.E. and C.C. analysed Rad53 shift and provided technical assistance. C.C. performed the DNA damage sensitivity experiments. L.X. analysed the telomere structure. C.I.N. guided experimental design and helped analyse growth phenotypes and bypass in mutant backgrounds. C.I.N. wrote the paper.

Corresponding author

Correspondence to Constance I. Nugent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and Supplementary Table S1 (PDF 709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petreaca, R., Chiu, HC., Eckelhoefer, H. et al. Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p. Nat Cell Biol 8, 748–755 (2006). https://doi.org/10.1038/ncb1430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing