Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome

Abstract

Covalent attachment of ubiquitin to proteins regulates a host of cellular events by proteolysis dependent and independent mechanisms. A variety of protein domains that bind non-covalently to ubiquitin have been described and functionally linked to diverse cellular processes1. Overall, however, the understanding and knowledge of the mechanisms by which ubiquitin-binding domains (UBDs) regulate these processes is limited. Here, we describe identification of a UBD in the yeast transcription factor Met4. Met4 activity, but not its stability, is regulated by polyubiquitination2,3,4. We found that the UBD restricts the length of the polyubiquitin chain that is assembled on Met4, and prevents proteasomal recognition and degradation of polyubiquitinated Met4. Inactivation of the UBD allowed synthesis of longer ubiquitin chains on Met4 and transformed the normally stable polyubiquitinated Met4 into a short-lived protein. Our results demonstrate a function for UBDs in ubiquitin-chain synthesis and regulation of protein degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Met4 binds to ubiquitin.
Figure 2: A ubiquitin-interacting motif specific to Lys 48 in Met4.
Figure 3: The ubiquitin-interacting motif (UIM) protects Met4 from degradation.
Figure 4: The ubiquitin-interacting motif in Met4 protects from the proteasome and restricts ubiquitin-chain length.
Figure 5: The ubiquitin-interacting motif function cannot be provided in trans.

Similar content being viewed by others

References

  1. Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  2. Kaiser, P., Flick, K., Wittenberg, C. & Reed, S. I. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102, 303–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kuras, L. et al. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell 10, 69–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Flick, K. et al. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nature Cell Biol. 6, 634–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Yen, J. L., Su, N. Y. & Kaiser, P. The yeast ubiquitin ligase SCFMet30 regulates heavy metal response. Mol. Biol. Cell 16, 1872–1882 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbey, R. et al. Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium. EMBO J. 24, 521–532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas, D. & Surdin-Kerjan, Y. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61, 503–532 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Patton, E. E. et al. SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J. 19, 1613–1624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Su, N. Y., Flick, K. & Kaiser, P. The F-box protein Met30 is required for multiple steps in the budding yeast cell cycle. Mol. Cell. Biol. 25, 3875–3885 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaiser, P., Sia, R. A., Bardes, E. G., Lew, D. J. & Reed, S. I. Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1. Genes Dev. 12, 2587–2597 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finley, D. et al. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-defecient yeast mutant. Mol. Cell. Biol. 14, 5501–5509 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Young, P., Deveraux, Q., Beal, R. E., Pickart, C. M. & Rechsteiner, M. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273, 5461–5467 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Raasi, S., Varadan, R., Fushman, D. & Pickart, C. M. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nature Struct. Mol. Biol. 12, 708–714 (2005).

    Article  CAS  Google Scholar 

  16. Rouillon, A., Barbey, R., Patton, E. E., Tyers, M. & Thomas, D. Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30)complex. EMBO J. 19, 282–294 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McClellan, A. J., Tam, S., Kaganovich, D. & Frydman, J. Protein quality control: chaperones culling corrupt conformations. Nature Cell Biol. 7, 736–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newman, J. R. & Keating, A. E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300, 2097–2101 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Thomas, D., Jacquemin, I. & Surdin-Kerjan, Y. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 1719–1727 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nature Cell Biol. 7, 742–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell. Dev. Biol. 19, 141–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nature Cell Biol. 8, 163–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Heessen, S., Masucci, M. G. & Dantuma, N. P. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell 18, 225–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Reed, S. I., Hadwiger, J. A. & Lorincz, A. T. Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc. Natl Acad. Sci. USA 82, 4055–4059 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Fleming, J. A. et al. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc. Natl Acad. Sci. USA 99, 1461–1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Raasi, S. & Pickart, C. M. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278, 8951–8959 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Swanson, K. A., Kang, R. S., Stamenova, S. D., Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22, 4597–4606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Sandmeyer and C. Pickart for critically reading the manuscript and the members of the Kaiser laboratory for helpful discussions. We are grateful to the anonymous reviewers for helpful suggestions. J.L.Y. is supported by a predoctoral TSR&TP fellowship. This work was supported by a grant from the National Institutes of Health (NIH; GM66164) to P.K.. S.R. acknowledges the support of C. Pickart, including a NIH grant (DK46984) that was awarded to C.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kaiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1 and S2 (PDF 5587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flick, K., Raasi, S., Zhang, H. et al. A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome. Nat Cell Biol 8, 509–515 (2006). https://doi.org/10.1038/ncb1402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing