Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation

A Corrigendum to this article was published on 16 April 2006

Abstract

The transcription factor NF-κB is sequestered in the cytoplasm in a complex with IκB1. Almost all NF-κB activation pathways converge on IκB kinase (IKK), which phosphorylates IκB resulting in Lys 48-linked polyubiquitination of IκB and its degradation. This allows migration of NF-κB to the nucleus where it regulates gene expression2. IKK has two catalytic subunits, IKKα and IKKβ, and a regulatory subunit, IKKγ or NEMO. NEMO is essential for NF-κB activation, and NEMO dysfunction in humans is the cause of incontinentia pigmenti and hypohidrotic ectodermal dysplasia and immunodeficiency (HED–ID)3. The recruitment of IKK to occupied cytokine receptors, and its subsequent activation, are dependent on the attachment of Lys 63-linked polyubiquitin chains to signalling intermediates such as receptor-interacting protein (RIP). Here, we show that NEMO binds to Lys 63- but not Lys 48-linked polyubiquitin, and that single point mutations in NEMO that prevent binding to Lys 63-linked polyubiquitin also abrogates the binding of NEMO to RIP in tumour necrosis factor (TNF)-α-stimulated cells, the recruitment of IKK to TNF receptor (TNF-R) 1, and the activation of IKK and NF-κB. RIP is also destabilized in the absence of NEMO binding and undergoes proteasomal degradation in TNF-α-treated cells. These results provide a mechanism for NEMO's critical role in IKK activation, and a key to understanding the link between cytokine-receptor proximal signalling and IKK and NF-κB activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NEMO binds to ubiquitin through a region encompassing the CC2 and leucine zipper domains.
Figure 2: NEMO specifically binds Lys 63-linked polyubiquitin chains.
Figure 3: NEMO mutants that cannot bind polyubiquitin are defective in mediating IKK and NF-κB activation.
Figure 4: NEMO specifically binds Lys 63-polyubiquitinated RIP.
Figure 5: NEMO binding of polyubiquitin recruits IKK to TNF-R1 and protects RIP from TNF-α-induced degradation.

Similar content being viewed by others

References

  1. Silverman, N. & Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001).

    Article  CAS  Google Scholar 

  2. Ben-Neriah, Y. Regulatory functions of ubiquitination in the immune system. Nature Immunol. 3, 20–26 (2002).

    Article  CAS  Google Scholar 

  3. Courtois, G., Smahi, A. & Israel, A. NEMO–IKKγ: linking NF-κB to human disease. Trends Mol. Med. 7, 427–430 (2001).

    Article  CAS  Google Scholar 

  4. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  Google Scholar 

  5. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).

    Article  CAS  Google Scholar 

  6. Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J. & Bron, C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18, 655–664 (2003).

    Article  CAS  Google Scholar 

  7. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  8. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  Google Scholar 

  9. Ozkaynak, E., Finley, D. & Varshavsky, A. The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312, 663–666 (1984).

    Article  CAS  Google Scholar 

  10. Hook, S. S., Orian, A., Cowley, S. M. & Eisenman, R. N. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc. Natl Acad. Sci. USA 99, 13425–13430 (2002).

    Article  CAS  Google Scholar 

  11. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell 15, 535–548 (2004).

    Article  CAS  Google Scholar 

  12. Agou, F. et al. The trimerization domain of NEMO is composed of the interacting C-terminal CC2 and LZ coiled-coil subdomains. J. Biol. Chem. 279, 27861–27869 (2004).

    Article  CAS  Google Scholar 

  13. Tegethoff, S., Behlke, J. & Scheidereit, C. Tetrameric oligomerization of IκB kinaseγ (IKKγ) is obligatory for IKK complex activity and NF-κB activation. Mol. Cell Biol. 23, 2029–2041 (2003).

    Article  CAS  Google Scholar 

  14. Makris, C., Roberts, J. L. & Karin, M. The carboxyl-terminal region of IκB kinaseγ (IKKγ) is required for full IKK activation. Mol. Cell Biol. 22, 6573–6581 (2002).

    Article  CAS  Google Scholar 

  15. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nature Genet. 27, 277–285 (2001).

    Article  CAS  Google Scholar 

  16. Pickart, C. M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  Google Scholar 

  17. Trakshel, G. M. & Maines, M. D. Characterization of glutathione S-transferases in rat kidney. Alteration of composition by cis-platinum. Biochem J 252, 127–136 (1988).

    Article  CAS  Google Scholar 

  18. Lee, T. H., Shank, J., Cusson, N. & Kelliher, M. A. The kinase activity of RIP1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of RIP1 by TRAF2. J. Biol. Chem. 279, 33185–33191 (2004).

    Article  CAS  Google Scholar 

  19. Kishida, S., Sanjo, H., Akira, S., Matsumoto, K. & Ninomiya-Tsuji, J. TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. Genes Cells 10, 447–454 (2005).

    Article  CAS  Google Scholar 

  20. Tenno, T. et al. Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 9, 865–875 (2004).

    Article  CAS  Google Scholar 

  21. Varadan, R. et al. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 279, 7055–7063 (2004).

    Article  CAS  Google Scholar 

  22. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKKγ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998).

    Article  CAS  Google Scholar 

  23. Poyet, J. L. et al. Activation of the IκB kinases by RIP via IKKγ–NEMO-mediated oligomerization. J. Biol. Chem. 275, 37966–37977 (2000).

    Article  CAS  Google Scholar 

  24. Lewis, J. et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-κB activation. J. Biol. Chem. 275, 10519–10526 (2000).

    Article  CAS  Google Scholar 

  25. Chen, G., Cao, P. & Goeddel, D. V. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol. Cell 9, 401–410 (2002).

    Article  CAS  Google Scholar 

  26. Thome, M. & Tschopp, J. TCR-induced NF-κB activation: a crucial role for Carma1, Bcl10 and MALT1. Trends Immunol. 24, 419–424 (2003).

    Article  CAS  Google Scholar 

  27. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    Article  CAS  Google Scholar 

  28. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  Google Scholar 

  29. Harhaj, E. W. et al. Somatic mutagenesis studies of NF-κB signaling in human T cells: evidence for an essential role of IKKγ in NF-κB activation by T-cell costimulatory signals and HTLV-I Tax protein. Oncogene 19, 1448–1456 (2000).

    Article  CAS  Google Scholar 

  30. Schmidt-Supprian, M. et al. NEMO–IKKγ-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  Google Scholar 

  31. Vojtek, A. B. & Hollenberg, S. M. Ras–Raf interaction: two-hybrid analysis. Methods Enzymol. 255, 331–342 (1995).

    Article  CAS  Google Scholar 

  32. Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999).

    Article  CAS  Google Scholar 

  33. Conze, D. B. et al. Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo. Mol. Cell Biol. 25, 3348–3356 (2005).

    Article  CAS  Google Scholar 

  34. Lioubin, M. N. et al. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 10, 1084–1095 (1996).

    Article  CAS  Google Scholar 

  35. Ea, C. K., Sun, L., Inoue, J. & Chen, Z. J. TIFA activates IκB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proc. Natl Acad. Sci. USA 101, 15318–15323 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Z. Liu for critical review of this manuscript. S.M.S. is a Kimmel Scholar. This research was supported by the Intramural Research Program of the National Institutes of Health, Center for Cancer Research, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Ashwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 1719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CJ., Conze, D., Li, T. et al. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nat Cell Biol 8, 398–406 (2006). https://doi.org/10.1038/ncb1384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing