Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein

An Erratum to this article was published on 16 April 2006

Abstract

The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin–Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sizzled cooperates with Chordin but not with other Bmp antagonists.
Figure 2: Sizzled controls the stability of Chordin.
Figure 3: Sizzled inhibits Bmp1a and Tll1.
Figure 4: The cysteine-rich domain (CRD) of Sizzled is required for dorsalization and inhibition of Bmp1a.
Figure 5: Role of Bmp1a, Tll1 and Sizzled in dorso-ventral axis formation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Schier, A. F. & Talbot, W. S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39, 561–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hibi, M., Hirano, T. & Dawid, I. B. Organizer formation and function. Results Probl. Cell Differ. 40, 48–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. De Robertis, E. M. & Kuroda, H. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285–308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sasai, Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Larrain, J. et al. Proteolytic cleavage of chordin as a switch for the dual activities of twisted gastrulation in BMP signaling. Development 128, 4439–4447 (2001).

    CAS  PubMed  Google Scholar 

  9. Piccolo, S. et al. Cleavage of chordin by xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marques, G. et al. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91, 417–426 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Blader, P., Rastegar, S., Fischer, N. & Strahle, U. Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. Science 278, 1937–1940 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Hammerschmidt, M., Serbedzija, G. N. & McMahon, A. P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452–2461 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Mullins, M. C. et al. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93 (1996).

    CAS  PubMed  Google Scholar 

  14. Solnica-Krezel, L. et al. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123, 67–80 (1996).

    CAS  PubMed  Google Scholar 

  15. Kishimoto, Y. et al. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457–4466 (1997).

    CAS  PubMed  Google Scholar 

  16. Schmid, B. et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127, 957–967 (2000).

    CAS  PubMed  Google Scholar 

  17. Dick, A. et al. Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127, 343–354 (2000).

    CAS  PubMed  Google Scholar 

  18. Bauer, H. et al. The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development 128, 849–858 (2001).

    CAS  PubMed  Google Scholar 

  19. Mintzer, K. A. et al. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128, 859–869 (2001).

    CAS  PubMed  Google Scholar 

  20. Hild, M. et al. The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126, 2149–2159 (1999).

    CAS  PubMed  Google Scholar 

  21. Kramer, C. et al. Maternally supplied smad5 is required for ventral specification in zebrafish embryos prior to zygotic bmp signaling. Dev. Biol. 250, 263–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Connors, S. A., Trout, J., Ekker, M. & Mullins, M. C. The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 126, 3119–3130 (1999).

    CAS  PubMed  Google Scholar 

  23. Hammerschmidt, M. et al. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95–102 (1996).

    CAS  PubMed  Google Scholar 

  24. Yabe, T. et al. Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development 130, 2705–2716 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Martyn, U. & Schulte-Merker, S. The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev. Biol. 260, 58–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Salic, A. N., Kroll, K. L., Evans, L. M. & Kirschner, M. W. Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124, 4739–4748 (1997).

    CAS  PubMed  Google Scholar 

  27. Bradley, L. et al. Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning. Dev. Biol. 227, 118–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Collavin, L. & Kirschner, M. W. The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. Development 130, 805–816 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Nikaido, M. et al. Tbx24, encoding a T-box protein, is mutated in the zebrafish somite- segmentation mutant fused somites. Nature Genet. 31, 195–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, J. & Fisher, S. Twisted gastrulation enhances BMP signaling through chordin dependent and independent mechanisms. Development 132, 383–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lekven, A. C., Thorpe, C. J., Waxman, J. S. & Moon, R. T. Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev. Cell 1, 103–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lele, Z., Bakkers, J. & Hammerschmidt, M. Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis 30, 190–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Uren, A. et al. Secreted frizzled-related protein-1 binds directly to wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, K. et al. The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc. Natl Acad. Sci. USA 94, 11196–11200 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones, S. E. & Jomary, C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 24, 811–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kawano, Y. & Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Banyai, L. & Patthy, L. The NTR module: domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases. Protein Sci. 8, 1636–1642 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oelgeschlager, M., Kuroda, H., Reversade, B. & De Robertis, E. M. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4, 219–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Schulte-Merker, S., Lee, K. J., McMahon, A. P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Shimizu, T. et al. Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech. Dev. 91, 293–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jones, C. M. & Smith, J. C. Establishment of a BMP-4 morphogen gradient by long-range inhibition. Dev. Biol. 194, 12–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Miller-Bertoglio, V. E. et al. Differential regulation of chordin expression domains in mutant zebrafish. Dev. Biol. 192, 537–550 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Furthauer, M., Thisse, B. & Thisse, C. Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev. Biol. 214, 181–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Nikaido, M. et al. In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Development 126, 181–190 (1999).

    CAS  PubMed  Google Scholar 

  45. Hashimoto, H. et al. The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development 131, 1741–1753 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Ueno, B. Thisse, C. Thisse, M. Halpern, K. Araki, U. Strähle, and S. Fisher for providing the DNA samples; A. Yamamoto, G. Sheng, and Y. Sasai for comments on the manuscript; M. Royle for editing the manuscript; H. Akiyama, K. Bando and Y. Wataoka for fish care and technical assistance; and all members of our laboratory for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Hibi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 1584 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraoka, O., Shimizu, T., Yabe, T. et al. Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein. Nat Cell Biol 8, 329–340 (2006). https://doi.org/10.1038/ncb1379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing