Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The HIV-1 Vpr and glucocorticoid receptor complex is a gain-of-function interaction that prevents the nuclear localization of PARP-1

A Corrigendum to this article was published on 01 March 2006

Abstract

The Vpr protein of HIV-1 functions as a vital accessory gene by regulating various cellular functions, including cell differentiation, apoptosis, nuclear factor of κB (NF-κB) suppression and cell-cycle arrest of the host cell. Several reports have indicated that Vpr complexes with the glucocorticoid receptor (GR), but it remains unclear whether the GR pathway is required for Vpr to function1. Here, we report that Vpr uses the GR pathway as a recruitment vehicle for the NF-κB co-activating protein, poly(ADP-ribose) polymerase-1 (PARP-1). The GR interaction with Vpr is both necessary and sufficient to facilitate this interaction by potentiating the formation of a Vpr–GR–PARP-1 complex. The recruitment of PARP-1 by the Vpr–GR complex prevents its nuclear localization, which is necessary for Vpr to suppress NF-κB. The association of GR with PARP-1 is not observed with steroid (glucocorticoid) treatment, indicating that the GR association with PARP-1 is a gain of function that is solely attributed to HIV-1 Vpr. These data provide important insights into Vpr biology and its role in HIV pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vpr transcriptionally suppresses NF-κB through a pathway that does not require a functional glucocorticoid receptor.
Figure 2: Vpr interacts with PARP-1 and inhibits its nuclear localization through a GR interaction-dependent pathway.
Figure 3: The GR interaction with Vpr is both necessary and sufficient to recruit PARP-1.
Figure 4: Recruitment of PARP-1 to the Vpr–GR complex is necessary for Vpr-mediated transcriptional suppression of NF-κB.
Figure 5: The PARP-1–Vpr–GR interaction is relevant in vivo.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Muthumani, K. et al. Human immunodeficiency virus type 1 (HIV-1) Vpr-regulated cell death: insights into the mechanism. Cell Death Differ. 12, 962–970 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Gandhi, R. T. & Walker, B. D. Immunologic control of HIV-1. Annu. Rev. Med. 53, 149–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, X. N. et al. Evasion of cytotoxic T lymphocyte (CTL) responses by Nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J. Exp. Med. 186, 7–16 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Letvin, N. L. Progress in the development of an HIV-1 vaccine. Science 280, 1875–1880 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Geleziunas, R. et al. HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Muthumani, K. et al. Mechanism of HIV-1 viral protein R-induced apoptosis. Biochem. Biophys. Res. Commun. 304, 583–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Levy, D. N. et al. Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 91, 10873–10877 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levy, D. N., Refaeli, Y. & Weiner, D. B. Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J. Virol. 69, 1243–1252 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sherman, M. P. et al. HIV-1 vpr displays natural protein transducing properties: implications for viral pathogenesis. Virology 302, 95–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Jowett, J. B. et al. Human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J. Virol. 69, 6304–6313 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ayyavoo, V. et al. HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor κB. Nature Med. 3, 1117–1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Stewart, S. A. et al. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J. Virol. 71, 5579–5592 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goh, W. C. et al. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nature Med. 4, 65–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Jacotot, E. et al. Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J. Exp. Med. 193, 509–519 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muthumani, et al. HIV-1 Vpr induces apoptosis through caspase 9 in T cells and peripheral blood mononuclear cells. J. Biol. Chem. 277, 37820–37831 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Muthumani, K. et al. HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int. Immunol. 17, 103–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. de Noronha, C. M. et al. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294, 1105–1108 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Muthumani, K. et al. HIV-1 viral protein-R (Vpr) protects against lethal superantigen challenge while maintaining homeostatic T cell levels in vivo. Mol. Ther. 12, 910–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Refaeli, Y., Levy, D. N. & Weiner, D. B. The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product. Proc. Natl Acad. Sci. USA 92, 3621–3625 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kino, T. et al. The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. J. Exp. Med. 189, 51–62 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramanathan, M. P. et al. Carboxyl terminus of hVIP/mov34 is critical for HIV-1-Vpr interaction and glucocorticoid-mediated signaling. J. Biol. Chem. 277, 47854–47860 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Doppler, W. et al. Expression level-dependent contribution of glucocorticoid receptor domains for functional interaction with STAT5. Mol. Cell. Biol. 21, 3266–3279 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-kappaB. Nature Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  Google Scholar 

  25. Oliver, F.J. et al. Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly(ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hassa, P. O. et al. The enzymatic and DNA binding activity of PARP-1 are not required for NF-κB coactivator function. J. Biol. Chem. 276, 45588–45597 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Chang, W. J. & Alvarez-Gonzalez, R. The sequence-specific DNA binding of NF-κB is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. J. Biol. Chem. 276, 47664–47670 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hassa, P. O. et al. The enzymatic and DNA binding activity of PARP-1 are not required for NF-κB coactivator function. J. Biol. Chem. 276, 45588–45897 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Mahalingam, S. et al. Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J. Virol. 71, 6339–6347 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arad, G. et al. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nature Med. 6, 414–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, M. Y. et al. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Parent, M. et al. Poly(ADP-ribose) polymerase-1 is a negative regulator of HIV-1 transcription through competitive binding to TAR RNA with Tat-positive transcription elongation factor b (p-TEFb) complex. J. Biol. Chem. 280, 448–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Sawaya, B. E. et al. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J. Biol. Chem. 275, 35209–35214 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kashanchi, F. et al. Cell cycle-regulated transcription by the human immunodeficiency virus type 1 Tat transactivator. J. Virol. 74, 652–660 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zong, W.X. et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1223–1226 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

PARP-1 expression vector was generously provided by Z.-Q. Wang (IARC, Lyon, France) and p65/RelA expression constructs were gifts from D.R. Green (La Jolla Institute for Allergy and Immunology, San Diego, CA). We thank M.A. Chattergoon and D.J. Laddy for their useful comments, and M.J. Merva for administrative assistance. Support from the National Institutes of Health (NIH) AIDS Research and Reference Reagents program and Centers for AIDS Research (CFAR), University of Pennsylvania, is also acknowledged. This work was supported by grants from the NIH to D.B.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthumani, K., Choo, A., Zong, WX. et al. The HIV-1 Vpr and glucocorticoid receptor complex is a gain-of-function interaction that prevents the nuclear localization of PARP-1. Nat Cell Biol 8, 170–179 (2006). https://doi.org/10.1038/ncb1352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing