Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development

An Erratum to this article was published on 02 December 2005

Abstract

Disrupted-In-Schizophrenia-1 (DISC1), originally identified at the breakpoint of a chromosomal translocation that is linked to a rare familial schizophrenia, has been genetically implicated in schizophrenia in other populations. Schizophrenia involves subtle cytoarchitectural abnormalities that arise during neurodevelopment, but the underlying molecular mechanisms are unclear. Here, we demonstrate that DISC1 is a component of the microtubule-associated dynein motor complex and is essential for maintaining the complex at the centrosome, hence contributing to normal microtubular dynamics. Carboxy-terminal-truncated mutant DISC1 (mutDISC1), which results from a chromosomal translocation, functions in a dominant-negative manner by redistributing wild-type DISC1 through self-association and by dissociating the DISC1–dynein complex from the centrosome. Consequently, either depletion of endogenous DISC1 or expression of mutDISC1 impairs neurite outgrowth in vitro and proper development of the cerebral cortex in vivo. These results indicate that DISC1 is involved in cerebral cortex development, and suggest that loss of DISC1 function may underlie neurodevelopmental dysfunction in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DISC1 regulates the dynein protein complex at the centrosome and modulates microtubular dynamics.
Figure 2: Influence of DISC1 in microtubular reorganization in COS-7 cells.
Figure 3: mutDISC1 functions in a dominant-negative manner via its self-association domain.
Figure 4: MutDISC1 affects a key function of wtDISC1 in anchoring the dynein motor proteins at the centrosome.
Figure 5: Requirement of DISC1 for neurite outgrowth in neuronal cells.
Figure 6: Essential role of DISC1 in proper neuronal migration of the developing cerebral cortex in vivo.
Figure 7: mutDISC1 impairs proper neurodevelopment in the cerebral cortex in vivo.

Similar content being viewed by others

References

  1. Millar, J. K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423 (2000).

    Article  CAS  Google Scholar 

  2. Blackwood, D. H. et al. Schizophrenia and affective disorders — cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am. J. Hum. Genet. 69, 428–433 (2001).

    Article  CAS  Google Scholar 

  3. Ekelund, J. et al. Chromosome 1 loci in Finnish schizophrenia families. Hum. Mol. Genet. 10, 1611–1617 (2001).

    Article  CAS  Google Scholar 

  4. Harrison, P. J. & Weinberger, D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10, 40–68 (2005).

    Article  CAS  Google Scholar 

  5. Hodgkinson, C. A. et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am. J. Hum. Genet. 75, 862–872 (2004).

    Article  CAS  Google Scholar 

  6. Hennah, W. et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum. Mol. Genet. 12, 3151–3159 (2003).

    Article  CAS  Google Scholar 

  7. Akbarian, S. et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatry 50, 169–177 (1993).

    Article  CAS  Google Scholar 

  8. Lewis, D. A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002).

    Article  CAS  Google Scholar 

  9. Weinberger, D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44, 660–669 (1987).

    Article  CAS  Google Scholar 

  10. Harrison, P. J. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122, 593–624 (1999).

    Article  Google Scholar 

  11. Sawa, A. & Snyder, S. H. Schizophrenia: diverse approaches to a complex disease. Science 296, 692–695 (2002).

    Article  CAS  Google Scholar 

  12. Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T. & Gleeson, J. G. Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu. Rev. Cell Dev. Biol. 20, 593–618 (2004).

    Article  CAS  Google Scholar 

  13. Ross, M. E. & Walsh, C. A. Human brain malformations and their lessons for neuronal migration. Annu. Rev. Neurosci. 24, 1041–1070 (2001).

    Article  CAS  Google Scholar 

  14. Hatten, M. E. New directions in neuronal migration. Science 297, 1660–1663 (2002).

    Article  CAS  Google Scholar 

  15. Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nature Rev. Genet. 3, 342–355 (2002).

    Article  CAS  Google Scholar 

  16. Reiner, O. et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  17. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  Google Scholar 

  18. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genet. 19, 333–339 (1998).

    Article  CAS  Google Scholar 

  19. Wynshaw-Boris, A. & Gambello, M. J. LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15, 639–651 (2001).

    Article  CAS  Google Scholar 

  20. Assadi, A. H. et al. Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35, 270–276 (2003).

    Article  CAS  Google Scholar 

  21. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    Article  CAS  Google Scholar 

  22. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    Article  CAS  Google Scholar 

  23. Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140, 391–401 (1998).

    Article  CAS  Google Scholar 

  24. Waterman-Storer, C. M. et al. The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc. Natl Acad. Sci. USA 94, 12180–12185 (1997).

    Article  CAS  Google Scholar 

  25. Solecki, D. J., Model, L., Gaetz, J., Kapoor, T. M. & Hatten, M. E. Par6α signaling controls glial-guided neuronal migration. Nature Neurosci. 7, 1195–1203 (2004).

    Article  CAS  Google Scholar 

  26. Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    Article  CAS  Google Scholar 

  27. Tsai, L. H. & Gleeson, J. G. Nucleokinesis in neuronal migration. Neuron 46, 383–388 (2005).

    Article  CAS  Google Scholar 

  28. Ozeki, Y. et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc. Natl Acad. Sci. USA 100, 289–294 (2003).

    Article  CAS  Google Scholar 

  29. Morris, J. A., Kandpal, G., Ma, L. & Austin, C. P. DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet. 12, 1591–1608 (2003).

    Article  CAS  Google Scholar 

  30. Millar, J. K., Christie, S. & Porteous, D. J. Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem. Biophys. Res. Commun. 311, 1019–1025 (2003).

    Article  CAS  Google Scholar 

  31. Brandon, N. J. et al. Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol. Cell Neurosci. 25, 42–55 (2004).

    Article  CAS  Google Scholar 

  32. Miyoshi, K. et al. DISC1 localizes to the centrosome by binding to kendrin. Biochem. Biophys. Res. Commun. 317, 1195–1199 (2004).

    Article  CAS  Google Scholar 

  33. Miyoshi, K. et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol. Psychiatry 8, 685–694 (2003).

    Article  CAS  Google Scholar 

  34. Smith, D. S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol. 2, 767–775 (2000).

    Article  CAS  Google Scholar 

  35. Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).

    Article  CAS  Google Scholar 

  36. Tabata, H. & Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872 (2001).

    Article  CAS  Google Scholar 

  37. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci. 6, 1277–1283 (2003).

    Article  CAS  Google Scholar 

  38. Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114, 469–482 (2003).

    Article  CAS  Google Scholar 

  39. Tarricone, C. et al. Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44, 809–821 (2004).

    CAS  PubMed  Google Scholar 

  40. Sachs, N. A. et al. A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol. Psychiatry 10, 758–764 (2005).

    Article  CAS  Google Scholar 

  41. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet. 18, 106–108 (1998).

    Article  CAS  Google Scholar 

  42. Hayashi, M. A. et al. Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1. Proc. Natl Acad. Sci. USA 102, 3828–3833 (2005).

    Article  CAS  Google Scholar 

  43. Sawa, A., Khan, A. A., Hester, L. D. & Snyder, S. H. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl Acad. Sci. USA 94, 11669–11674 (1997).

    Article  CAS  Google Scholar 

  44. Sawa, A. et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med. 5, 1194–1198 (1999).

    Article  CAS  Google Scholar 

  45. Tomoda, T., Kim, J. H., Zhan, C. & Hatten, M. E. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 18, 541–558 (2004).

    Article  CAS  Google Scholar 

  46. Nakajima, K., Mikoshiba, K., Miyata, T., Kudo, C. & Ogawa, M. Disruption of hippocampal development in vivo by CR-50 mAb against reelin. Proc. Natl Acad. Sci. USA 94, 8196–8201 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Lema for preparation of the figures. We thank P. Talalay, D. Solecki, T. Sedlak, N. Katsanis, J. Cheah and S. Snyder for critical reading of the manuscript. We thank T. Oe for technical support of the neurite outgrowth assay, and M. Peak for technical assistance. This work was supported by a U.S. Public Health Service Grant (MH-069853) to A.S. It was also supported by foundation grants from NARSAD, Stanley, S-R and funds from the departments (A.S.); NARSAD and Stanley (C.A.R.); MEXT, JSPS, Kanehara, Casio, Novaltis and Sumitomo foundations (K.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 plus Supplementary methods (PDF 626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiya, A., Kubo, Ki., Tomoda, T. et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 7, 1167–1178 (2005). https://doi.org/10.1038/ncb1328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing