Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation

Abstract

Cullin family proteins organize ubiquitin ligase (E3) complexes to target numerous cellular proteins for proteasomal degradation. Neddylation, the process that conjugates the ubiquitin-like polypeptide Nedd8 to the conserved lysines of cullins, is essential for in vivo cullin-organized E3 activities1,2. Deneddylation, which removes the Nedd8 moiety, requires the isopeptidase activity of the COP9 signalosome (CSN)3,4. Here we show that in cells deficient for CSN activity, cullin1 (Cul1) and cullin3 (Cul3) proteins are unstable, and that to preserve their normal cellular levels, CSN isopeptidase activity is required. We further show that neddylated Cul1 and Cul3 are unstable — as suggested by the evidence that Nedd8 promotes the instability of both cullins — and that the unneddylatable forms of cullins are stable. The protein stability of Nedd8 is also subject to CSN regulation and this regulation depends on its cullin-conjugating ability, suggesting that Nedd8-conjugated cullins are degraded en bloc. We propose that while Nedd8 promotes cullin activation through neddylation, neddylation also renders cullins unstable. Thus, CSN deneddylation recycles the unstable, neddylated cullins into stable, unneddylated ones, and promotes cullin-organized E3 activity in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduction of Cul1 and Cul3 protein levels in cells harbouring mutations in the CSN complex.
Figure 2: Degradation of Cul1 and Cul3 proteins.
Figure 3: Requirement of CSN deneddylating activity to maintain Cul1 and Cul3 protein stability.
Figure 4: CSN regulation of Cul1 and Cul3 protein levels through a neddylation-dependent mechanism.
Figure 5: Degradation of Nedd8 in CSN5null cells.

Similar content being viewed by others

References

  1. Ou, C. Y., Lin, Y. F., Chen, Y. J. & Chien, C. T. Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev. 16, 2403–2414 (2002).

    Article  CAS  Google Scholar 

  2. Pintard, L. et al. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol. 13, 911–921 (2003).

    Article  CAS  Google Scholar 

  3. Lyapina, S. et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382–1385 (2001).

    Article  CAS  Google Scholar 

  4. Zhou, C. et al. The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochem. 2, 7 (2001).

    Article  CAS  Google Scholar 

  5. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  6. Willems, A. R., Schwab, M. & Tyers, M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim. Biophys. Acta 1695, 133–170 (2004).

    Article  CAS  Google Scholar 

  7. Kamura, T., Conrad, M. N., Yan, Q., Conaway, R. C. & Conaway, J. W. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13, 2928–2933 (1999).

    Article  CAS  Google Scholar 

  8. Hori, T. et al. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18, 6829–6834 (1999).

    Article  CAS  Google Scholar 

  9. Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).

    Article  CAS  Google Scholar 

  10. Wu, K., Chen, A. & Pan, Z. Q. Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J. Biol. Chem. 275, 32317–32324 (2000).

    Article  CAS  Google Scholar 

  11. Kawakami, T. et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20, 4003–4012 (2001).

    Article  CAS  Google Scholar 

  12. Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003).

    Article  CAS  Google Scholar 

  13. Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D. A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783–790 (2003).

    Article  CAS  Google Scholar 

  14. Wei, N. & Deng, X. W. The COP9 signalosome. Annu. Rev. Cell Dev. Biol. 19, 261–286 (2003).

    Article  CAS  Google Scholar 

  15. Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002).

    Article  CAS  Google Scholar 

  16. Gusmaroli, G., Feng, S. & Deng, X. W. The Arabidopsis CSN5A and CSN5B subunits are present in distinct COP9 signalosome complexes, and mutations in their JAMM domains exhibit differential dominant negative effects on development. Plant Cell 16, 2984–3001 (2004).

    Article  CAS  Google Scholar 

  17. Dohmann, E. M., Kuhnle, C. & Schwechheimer, C. Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell 17, 1967–1978 (2005).

    Article  CAS  Google Scholar 

  18. Doronkin, S., Djagaeva, I. & Beckendorf, S. K. The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev. Cell 4, 699–710 (2003).

    Article  CAS  Google Scholar 

  19. Wee, S., Geyer, R. K., Toda, T. & Wolf, D. A. CSN facilitates Cullin–RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nature Cell Biol. 7, 387–391 (2005).

    Article  CAS  Google Scholar 

  20. Cope, G. A. & Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663–671 (2003).

    Article  CAS  Google Scholar 

  21. Wolf, D. A., Zhou, C. & Wee, S. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nature Cell Biol. 5, 1029–1033 (2003).

    Article  CAS  Google Scholar 

  22. von Arnim, A. G. On again-off again: COP9 signalosome turns the key on protein degradation. Curr. Opin. Plant Biol. 6, 520–529 (2003).

    Article  CAS  Google Scholar 

  23. Oron, E. et al. COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development 129, 4399–4409 (2002).

    CAS  PubMed  Google Scholar 

  24. Uhle, S. et al. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J. 22, 1302–1312 (2003).

    Article  CAS  Google Scholar 

  25. Zhou, C. et al. Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Mol. Cell 11, 927–938 (2003).

    Article  CAS  Google Scholar 

  26. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    Article  CAS  Google Scholar 

  27. He, Q., Cheng, P. & Liu, Y. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19, 1518–1531 (2005).

    Article  CAS  Google Scholar 

  28. Doronkin, S., Djagaeva, I. & Beckendorf, S. K. CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. Development 129, 5053–5064 (2002).

    CAS  PubMed  Google Scholar 

  29. Worby, C. A., Simonson-Leff, N. & Dixon, J. E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci. STKE 2001, pl1 (2001).

    CAS  PubMed  Google Scholar 

  30. Chen, C. K. & Chien, C. T. Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors. Proc. Natl Acad. Sci. USA 96, 5055–5060 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. K. Beckendorf, D. A. Chamovitz, G. Cope, R. Desheias and D. Segal for reagents and fly stocks; S. K. Huang and Y. R. Chan for generating the Nedd8 transgenic stocks; K. Deen for editing work; and E. Chang, S. I. Jang, C. H. Lee, T. P. Yao and lab members for helpful comments and discussions. This work was supported by National Science Council, National Health Research Institute, and Academia Sinica of Taiwan to C.T.C. and NHRI MD PhD/DDS PhD Predoctoral Fellowship DD9307N to J.T.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Ting Chien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and supplementary table S1 (PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JT., Lin, HC., Hu, YC. et al. Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nat Cell Biol 7, 1014–1020 (2005). https://doi.org/10.1038/ncb1301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing