Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative symmetry-breaking by actin polymerization in a model for cell motility

Abstract

Polymerizing networks of actin filaments are capable of exerting significant mechanical forces, used by eukaryotic cells and their prokaryotic pathogens to change shape or to move. Here we show that small beads coated uniformly with a protein that catalyses actin polymerization are initially surrounded by symmetrical clouds of actin filaments. This symmetry is broken spontaneously, after which the beads undergo directional motion. We have developed a stochastic theory, in which each actin filament is modelled as an elastic brownian ratchet, that quantitatively accounts for the observed emergent symmetry-breaking behaviour. Symmetry-breaking can only occur for polymers that have a significant subunit off-rate, such as the biopolymers actin and tubulin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symmetry-breaking in a cloud of actin filaments.
Figure 2: Description of the multifilament stochastic model.
Figure 3: Examples of bead trajectories calcuated using the stochastic model.
Figure 5
Figure 4: Time-dependent subdiffusive and superdiffusive motion.
Figure 6: Cooperativity between filaments.

Similar content being viewed by others

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).

    Article  CAS  Google Scholar 

  2. Bornens, M. Cell polarity: intrinsic or externally imposed? New Biol. 3, 627–636 (1991).

    CAS  PubMed  Google Scholar 

  3. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44– 49 (1990).

    Article  CAS  Google Scholar 

  4. Sheterline, P., Clayton, J. & Sparrow, J. Actin. Protein Profile 2, 1–103 (1995).

    CAS  PubMed  Google Scholar 

  5. Mogilner, A. & Oster, G. Cell motility driven by actin polymerization. Biophys J. 71, 3030–3045 (1996).

    Article  CAS  Google Scholar 

  6. Miyata, H., Nishiyama, S., Akashi, K. & Kinosita, K. Jr Protrusive growth from giant liposomes driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 2048– 2053 (1999).

    Article  CAS  Google Scholar 

  7. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  8. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  Google Scholar 

  9. Nabi, I. R. The polarization of the motile cell. J. Cell Sci. 112, 1803–1811 (1999).

    CAS  PubMed  Google Scholar 

  10. Oliver, T., Lee, J. & Jacobson, K. Forces exerted by locomoting cells. Semin. Cell Biol 5, 139–147 (1994).

    Article  CAS  Google Scholar 

  11. Elson, E. L., Felder, S. F., Jay, P. Y., Kolodney, M. S. & Pasternak, C. Forces in cell locomotion. Biochem. Soc. Symp. 65, 299–314 (1999).

    CAS  PubMed  Google Scholar 

  12. Dramsi, S. & Cossart, P. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 137–166 (1998).

    Article  CAS  Google Scholar 

  13. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  Google Scholar 

  14. Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260 (1992).

    Article  CAS  Google Scholar 

  15. Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl Acad. Sci. USA 87, 6068–6072 (1990).

    Article  CAS  Google Scholar 

  16. Sanger, J. M., Sanger, J. W. & Southwick, F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect. Immun. 60, 3609– 3619 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).

    Article  CAS  Google Scholar 

  18. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105– 108 (1998).

    Article  CAS  Google Scholar 

  19. Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 135, 647– 660 (1996).

    Article  CAS  Google Scholar 

  20. Kocks, C., Hellio, R., Gounon, P., Ohayon, H. & Cossart, P. Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly. J. Cell Sci. 105, 699–710 (1993).

    CAS  PubMed  Google Scholar 

  21. Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J. & Mitchison, T. J. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 76, 505– 517 (1994).

    Article  CAS  Google Scholar 

  22. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 4908– 4913 (1999).

    Article  CAS  Google Scholar 

  23. Dold, F. G., Sanger, J. M. & Sanger, J. W. Intact alpha-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil. Cytoskeleton 28, 97–107 (1994).

    Article  CAS  Google Scholar 

  24. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747– 2754 (1986).

    Article  CAS  Google Scholar 

  25. Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly- disassembly. Int. Rev. Cytol. 78, 1–125 (1982).

    Article  CAS  Google Scholar 

  26. Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).

    Article  CAS  Google Scholar 

  27. Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).

    Article  CAS  Google Scholar 

  28. Coates, T. D., Watts, R. G., Hartman, R. & Howard, T. H. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils. J. Cell Biol. 117, 765–774 (1992).

    Article  CAS  Google Scholar 

  29. Euteneuer, U. & Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 (1984).

    Article  CAS  Google Scholar 

  30. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999).

    Article  CAS  Google Scholar 

  31. Gerhart, J. et al. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107, 37–51 (1989).

    Google Scholar 

  32. Theriot, J. A. & Fung, D. C. Listeria monocytogenes-based assays for actin assembly factors. Methods Enzymol. 298, 114–122 (1998).

    Article  CAS  Google Scholar 

  33. Doi, M. & Edwards, S. The Theory of Polymer Dynamics (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  34. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58– 60 (1984).

    Article  CAS  Google Scholar 

  35. Ott, A., Magnasco, M., Simon, A. & Libchaber, A. Measurement of the persistence length of polymerized actin using fluorescence microscopy. Phys. Rev. E 48, R1642– R1645 (1993).

    Article  CAS  Google Scholar 

  36. Riveline, D., Wiggins, C. H., Goldstein, R. E. & Ott, A. Elastohydrodynamic study of acitn filaments using fluorescence microscopy. Phys. Rev. E 56, R1330– R1333 (1997).

    Article  CAS  Google Scholar 

  37. Marchand, J. B. et al. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol. 130, 331–343 (1995).

    Article  CAS  Google Scholar 

  38. Laine, R. O. et al. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infect. Immun. 66, 3775–3782 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Cameron for providing purified ActA–His protein for the experiment shown in Fig. 1, and K. Lustig, J. Robbins, K. Jung, L. Cameron, S. McCallum and P. Giardini for comments on the manuscript. This work was supported by grants from the NIH (AI36929) and the David and Lucile Packard Foundation to J.A.T., and from the Dutch Organization for Scientific Resarch (NWO) to A.v.O.

Correspondence and requests for materials should be addressed to J.A.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Theriot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Oudenaarden, A., Theriot, J. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat Cell Biol 1, 493–499 (1999). https://doi.org/10.1038/70281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing