Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells

Abstract

The bacterial pathogen Listeria monocytogenes uses the surface protein InlB to invade a variety of cell types1,2,3. The interaction of InlB with the hepatocyte growth-factor receptor, Met, is crucial for infection to occur3. Remarkably, the ubiquitin ligase Cbl is rapidly recruited to InlB-activated Met4. Recent studies have shown that ligand-dependent endocytosis of Met and other receptor tyrosine kinases is triggered by monoubiquitination of the receptor, a process that is mediatedc by Cbl5,6,7,8. Here, we show that purified InlB induces the Cbl-dependent monoubiquitination and endocytosis of Met. We then demonstrate that the bacterium exploits the ubiquitin-dependent endocytosis machinery to invade mammalian cells. First, we show that L. monocytogenes colocalizes with Met, EEA1, Cbl, clathrin and dynamin during entry. Then, we assess the role of different proteins of the endocytic machinery during L. monocytogenes infection. Over-expression or down-regulation of Cbl, respectively, increases or decreases bacterial invasion. Furthermore, RNA interference-mediated knock-down of major components of the endocytic machinery (for example, clathrin, dynamin, eps15, Grb2, CIN85, CD2AP, cortactin and Hrs), inhibit bacterial entry, establishing that the endocytic machinery is key to the bacterial internalization process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: InlB induces monoubiquitination and endocytosis of Met.
Figure 2: Met localization during Listeria monocytogenes infection.
Figure 3: Role of Cbl in L. monocytogenes infection.
Figure 4: Localization of endogenous clathrin and dynamin during L. monocytogenes infection.
Figure 5: Role of endocytosis machinery in L. monocytogenes entry.

Similar content being viewed by others

References

  1. Cossart, P., Pizarro-Cerda, J. & Lecuit, M. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol. 13, 23–31 (2003).

    Article  CAS  Google Scholar 

  2. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  Google Scholar 

  3. Shen, Y., Naujokas, M., Park, M. & Ireton, K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).

    Article  CAS  Google Scholar 

  4. Ireton, K., Payrastre, B. & Cossart, P. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J. Biol. Chem. 274, 17025–17032 (1999).

    Article  CAS  Google Scholar 

  5. Dikic, I., Szymkiewicz, I. & Soubeyran, P. Cbl signaling networks in the regulation of cell function. Cell. Mol. Life Sci. 60, 1805–1827 (2003).

    Article  CAS  Google Scholar 

  6. Petrelli, A. et al. The endophilin–CIN85–Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 416, 187–190 (2002).

    Article  CAS  Google Scholar 

  7. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell. Dev. Biol. 19, 141–172 (2003).

    Article  CAS  Google Scholar 

  8. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biol. 5, 461–466 (2003).

    Article  CAS  Google Scholar 

  9. Hammond, D. E., Urbe, S., Vande Woude, G. F. & Clague, M. J. Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene 20, 2761–2770 (2001).

    Article  CAS  Google Scholar 

  10. Kermorgant, S., Zicha, D. & Parker, P. J. Protein kinase C controls microtubule-based traffic but not proteasomal degradation of c-Met. J. Biol. Chem. 278, 28921–28929 (2003).

    Article  CAS  Google Scholar 

  11. Taher, T. E. et al. c-Cbl is involved in Met signaling in B cells and mediates hepatocyte growth factor-induced receptor ubiquitination. J. Immunol. 169, 3793–3800 (2002).

    Article  CAS  Google Scholar 

  12. Carter, S., Urbe, S. & Clague, M. J. The met receptor degradation pathway: Requirement for K48-linked polyubiquitin independent of proteasome activity. J. Biol. Chem. 279, 52835–52839 (2004).

    Article  CAS  Google Scholar 

  13. Hammond, D. E. et al. Endosomal dynamics of Met determine signaling output. Mol. Biol. Cell 14, 1346–1354 (2003).

    Article  CAS  Google Scholar 

  14. Bierne, H. et al. A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J. Cell Biol. 155, 101–112 (2001).

    Article  CAS  Google Scholar 

  15. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  Google Scholar 

  16. Pizarro-Cerda, J. et al. Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cell. Microbiol. 4, 101–115 (2002).

    Article  CAS  Google Scholar 

  17. Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. & McNiven, M. A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).

    Article  CAS  Google Scholar 

  18. Dupre, S., Urban-Grimal, D. & Haguenauer-Tsapis, R. Ubiquitin and endocytic internalization in yeast and animal cells. Biochim. Biophys. Acta 1695, 89–111 (2004).

    Article  CAS  Google Scholar 

  19. Huang, F. & Sorkin, A. Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the EGF receptor is essential and sufficient to support receptor endocytosis. Mol. Biol. Cell 16, 1268–1281 (2005).

    Article  CAS  Google Scholar 

  20. Lynch, D. K. et al. A cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J. Biol. Chem. 278, 21805–21813 (2003).

    Article  CAS  Google Scholar 

  21. Raiborg, C., Rusten, T. E. & Stenmark, H. Protein sorting into multivesicular endosomes. Curr. Opin. Cell Biol. 15, 446–455 (2003).

    Article  CAS  Google Scholar 

  22. Owen, D. J. Linking endocytic cargo to clathrin: structural and functional insights into coated vesicle formation. Biochem. Soc. Trans. 32, 1–14 (2004).

    Article  CAS  Google Scholar 

  23. Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N. & Sorkin, A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO J. 18, 2489–2499 (1999).

    Article  CAS  Google Scholar 

  24. Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003).

    Article  CAS  Google Scholar 

  25. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  26. Bierne, H. et al. WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor. J. Cell Sci. 118, 1537–1547 (2005).

    Article  CAS  Google Scholar 

  27. Engqvist-Goldstein, A. E. & Drubin, D. G. Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell. Dev. Biol. 19, 287–332 (2003).

    Article  CAS  Google Scholar 

  28. Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005).

    Article  CAS  Google Scholar 

  29. Van Nhieu, G. T., Krukonis, E. S., Reszka, A. A., Horwitz, A. F. & Isberg, R. R. Mutations in the cytoplasmic domain of the integrin β1 chain indicate a role for endocytosis factors in bacterial internalization. J. Biol. Chem. 271, 7665–7672 (1996).

    Article  CAS  Google Scholar 

  30. Harvey, H. A., Jennings, M. P., Campbell, C. A., Williams, R. & Apicella, M. A. Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol. Microbiol. 42, 659–672 (2001).

    Article  CAS  Google Scholar 

  31. Aggeler, J. & Werb, Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J. Cell Biol. 94, 613–623 (1982).

    Article  CAS  Google Scholar 

  32. Braun, L. et al. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25, 285–294 (1997).

    Article  CAS  Google Scholar 

  33. Pizarro-Cerda, J., Lecuit, M. & Cossart, P. in Methods in Microbiology (eds Sansonetti, P. J. & Zychlinsky, A.) 161–177 (Academic, London, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank A. de Melker and G. van der Horst from J. Borst's laboratory; and F. Brodsky, I. Dikic, T. Kirchhausen, M. A. McNiven and H. Stenmark for kindly providing us with reagents. We also thank M. Sachse, S. Sousa, E. Gouin and all members of P. Cossart's laboratory. This work received financial support from the Institut Pasteur (GPH 9), INSERM, ACI microbiologie and ARC. E.V. is a holder of an EMBO long-term fellowship. P.C. is an international research scholar from the Howards Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Cossart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie S1 (AVI 1859 kb)

Supplementary Information

Supplementary movie S2 (AVI 1783 kb)

Supplementary Information

Supplementary movie S3 (AVI 1824 kb)

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veiga, E., Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol 7, 894–900 (2005). https://doi.org/10.1038/ncb1292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing