Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium

A Corrigendum to this article was published on 01 June 2005

Abstract

In the developing brain, the organization of the neuroepithelium is maintained by a critical balance between proliferation and cell–cell adhesion of neural progenitor cells. The molecular mechanisms that underlie this are still largely unknown. Here, through analysis of a conditional knockout mouse for the Kap3 gene, we show that post-Golgi transport of N-cadherin by the KIF3 molecular motor complex is crucial for maintaining this balance. N-cadherin and β-catenin associate with the KIF3 complex by co-immunoprecipitation, and colocalize with KIF3 in cells. Furthermore, in KAP3-deficient cells, the subcellular localization of N-cadherin was disrupted. Taken together, these results suggest a potential tumour-suppressing activity for this molecular motor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mosaic deletion of KAP3 leads to malignant transformation of neuroepithelium.
Figure 2: Enlargement of the neural progenitor pool the in conditional knockout mouse.
Figure 3: Altered subcellular localization of N-cadherin in the conditional knockout mouse brain.
Figure 4: Decreased level of cell aggregation activity in KAP3-deficient MEFs (knockout, KO).
Figure 5: Altered subcellular localization of N-cadherin in KAP3-deficient MEFs.
Figure 6: Impaired post-Golgi transport of N-cadherin–GFP in knockout MEFs.
Figure 7: The KIF3 heterotrimeric motor is associated with N-cadherin and β-catenin.
Figure 8: Time-lapse images of KAP3A–YFP and N-cadherin–CFP signals in A431D cells.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  2. Hirokawa, N. & Takemura R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  Google Scholar 

  3. Aizawa, H. et al. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287–1296 (1992).

    Article  CAS  Google Scholar 

  4. Kondo, S. et al. KIF3A is a new microtubule-based anterograde motor in the nerve axon. J. Cell Biol. 125, 1095–1107 (1994).

    Article  CAS  Google Scholar 

  5. Yamazaki, H., Nakata, T., Okada, Y. & Hirokawa, N. KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J. Cell Biol. 130, 1387–1399 (1995).

    Article  CAS  Google Scholar 

  6. Yamazaki, H., Nakata, T., Okada, Y. & Hirokawa, N. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc. Natl Acad. Sci. USA 93, 8443–8448 (1996).

    Article  CAS  Google Scholar 

  7. Hirokawa, N. Stirring up development with the heterotrimeric kinesin KIF3. Traffic 1, 29–34 (2000).

    Article  CAS  Google Scholar 

  8. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    Article  CAS  Google Scholar 

  9. Takeda, S. et al. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J. Cell Biol. 145, 825–836 (1999).

    Article  CAS  Google Scholar 

  10. Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).

    Article  CAS  Google Scholar 

  11. Marszalek, J. R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175–187 (2000).

    Article  CAS  Google Scholar 

  12. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA 100, 5286–5291 (2003).

    Article  CAS  Google Scholar 

  13. Jimbo, T. et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biol. 4, 323–327 (2002).

    Article  CAS  Google Scholar 

  14. Takeda, S. et al. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255–1265 (2000).

    Article  CAS  Google Scholar 

  15. Shimizu, K. et al. SMAP, an Smg GDS-associating protein having arm repeats and phosphorylated by Src tyrosine kinase. J. Biol. Chem. 271, 27013–27017 (1996).

    Article  CAS  Google Scholar 

  16. Nishimura, T. et al. Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nature Cell Biol. 6, 328–334 (2004).

    Article  CAS  Google Scholar 

  17. Herrup, K. & Silver, J. Cortical development and topographic maps: patterns of cell dispersion in developing cerebral cortex. Curr. Opin. Neurobiol. 4, 108–111 (1994).

    Article  CAS  Google Scholar 

  18. Redies, C. & Takeichi, M. Expression of N-cadherin mRNA during development of the mouse brain. Dev. Dyn. 197, 26–39 (1993).

    Article  CAS  Google Scholar 

  19. Anastasiadis, P. Z. & Reynolds, A. B. The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell. Sci. 113, 1319–1334 (2000).

    CAS  PubMed  Google Scholar 

  20. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 1606–1609 (2000).

    Article  CAS  Google Scholar 

  21. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  22. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  23. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96, 5522–5527 (1999).

    Article  CAS  Google Scholar 

  24. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  Google Scholar 

  25. Takeichi, M. Cadherins in cancer: implications for invasion and metastasis. Curr. Opin. Cell Biol. 5, 806–811 (1993).

    Article  CAS  Google Scholar 

  26. Hermiston, M. L. & Gordon, J. I. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270, 1203–1207 (1995).

    Article  CAS  Google Scholar 

  27. Hirasawa, M. et al. Neuron-specific expression of Cre recombinase during the late phase of brain development. Neurosci. Res. 40, 125–132 (2001).

    Article  CAS  Google Scholar 

  28. Betz, U. A., Vosshenrich, C. A., Rajewsky, K. & Muller, W. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol. 6, 1307–1316 (1996).

    Article  CAS  Google Scholar 

  29. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  Google Scholar 

  30. Burger, P. C. & Scheithauer, B. W. Atlas of Tumor Pathology, Third Series, Fascicle 10, Tumors of the Central Nervous System (ed. Rosai, J.) (Armed Forces Institute of Pathology, Washington, DC, 1994).

    Google Scholar 

  31. Baldin, V., Lukas, J., Marcote, M. J., Pagano, M. & Draetta, G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7, 812–821 (1993).

    Article  CAS  Google Scholar 

  32. Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120-catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003).

    Article  CAS  Google Scholar 

  33. Mary, S. et al. Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol. Biol. Cell 13, 285–301 (2002).

    Article  CAS  Google Scholar 

  34. Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. J. Cell Biol. 163, 547–557 (2003).

    Article  CAS  Google Scholar 

  35. Yanagisawa, M. et al. A novel interaction between kinesin and p120 modulates p120 localization and function. J. Biol. Chem. 279, 9512–9521 (2004).

    Article  CAS  Google Scholar 

  36. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  Google Scholar 

  37. Lewis, J. E. et al. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J. Cell Biol. 136, 919–934 (1997).

    Article  CAS  Google Scholar 

  38. Lele, Z. et al. parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129, 3281–3294 (2002).

    CAS  PubMed  Google Scholar 

  39. Ganzler-Odenthal, S. I. & Redies, C. Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J. Neurosci. 18, 5415–5425 (1998).

    Article  CAS  Google Scholar 

  40. Gottardi, C. J. & Gumbiner, B. M. Adhesion signaling: how β-catenin interacts with its partners. Curr. Biol. 11, R792–R794 (2001).

    Article  CAS  Google Scholar 

  41. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  42. Le, T. L., Yap, A. S. & Stow, J. L. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol. 146, 219–232 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanaka, Y. et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158 (1998).

    Article  CAS  Google Scholar 

  44. Taniguchi, M. et al. Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance gene, pac: a transient gene-integration marker for ES cells. Nucleic Acids Res. 26, 679–680 (1998).

    Article  CAS  Google Scholar 

  45. Sakai, K. & Miyazaki, J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324 (1997).

    Article  CAS  Google Scholar 

  46. Teng, J. et al. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol. 155, 65–76 (2001).

    Article  CAS  Google Scholar 

  47. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    Article  CAS  Google Scholar 

  48. Southern, P. J. & Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1, 327–341 (1982).

    CAS  PubMed  Google Scholar 

  49. Takeichi, M. Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 75, 464–474 (1977).

    Article  CAS  Google Scholar 

  50. Miyatani, S. et al. Neural cadherin: role in selective cell-cell adhesion. Science 245, 631–635 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Miyazaki (Osaka University) for CAG-Cre mouse, M. Takeichi (RIKEN CDB, Kobe, Japan) for N-cadherin cDNA, M. J. Wheelock (Eppley Institute, Nebraska) for A431D cell line, T. Yagi (Osaka University) for pCre-Pac plasmid, and N. Osumi (Tohoku University) and Y. Gotoh (Tokyo University) for valuable suggestions on early brain development. We also thank H. Sato, H. Fukuda, M. Sugaya-Otsuka, N. Onouchi and T. Aizawa for technical assistance, and Y. Kanai, Y. Noda, Y. Okada, S. Takeda, M. Kawagishi, S. Niwa and other members of the Hirokawa laboratory for valuable discussions. This work was supported by a Center of Excellence grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan to N. H., and postdoctoral fellowships from Japanese Society for the Promotion of Science to J. T and T. R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hirokawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, J., Rai, T., Tanaka, Y. et al. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat Cell Biol 7, 474–482 (2005). https://doi.org/10.1038/ncb1249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing