Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics

Abstract

The small GTP-binding ADP-ribosylation factor 1 (ARF1) acts as a master regulator of Golgi structure and function through the recruitment and activation of various downstream effectors. It has been proposed that members of the Rho family of small GTPases also control Golgi function in coordination with ARF1, possibly through the regulation of Arp2/3 complex and actin polymerization on Golgi membranes. Here, we identify ARHGAP10 — a novel Rho GTPase-activating protein (Rho-GAP) that is recruited to Golgi membranes through binding to GTP-ARF1. We show that ARHGAP10 functions preferentially as a GAP for Cdc42 and regulates the Arp2/3 complex and F-actin dynamics at the Golgi through the control of Cdc42 activity. Our results establish a role for ARHGAP10 in Golgi structure and function at the crossroads between ARF1 and Cdc42 signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ARHGAP10 interacts with GTP-bound ARF1 and ARF6.
Figure 2: Distribution of endogenous ARHGAP10 by cell fractionation and immunofluorescence analyses.
Figure 3: ARHGAP10 localizes to the Golgi complex in a GTP-ARF1-dependent manner.
Figure 4: ARF-BD is recruited to lipids through direct interaction with GTP-bound myristoylated ARF1.
Figure 5: The Rho-GAP domain of ARHGAP10 acts preferentially on Cdc42 in vitro.
Figure 6: RNAi-mediated depletion of ARHGAP10 induces cell spreading, stress fibre formation and shortening of Golgi stacks.
Figure 7: Accumulation of juxtanuclear Arp2/3 complex structures upon loss of ARHGAP10 expression.
Figure 8: Expression of ARF1Q71L promotes the assembly of F-actin and Arp2/3 complex structures that depend on Cdc42 and ARHGAP10 activity.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Chavrier, P. & Goud, B. The role of ARF and rab GTPases in membrane transport. Curr. Opin. Cell Biol. 11, 466–475 (1999).

    Article  CAS  Google Scholar 

  2. De Matteis, M. A. & Morrow, J. S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113 (Pt 13), 2331–2343 (2000).

    Google Scholar 

  3. Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol. 14, 428–433 (2002).

    Article  CAS  Google Scholar 

  4. Nie, Z., Hirsch, D. S. & Randazzo, P. A. Arf and its many interactors. Curr. Opin. Cell Biol. 15, 396–404 (2003).

    Article  CAS  Google Scholar 

  5. Wu, W. J., Erickson, J. W., Lin, R. & Cerione, R. A. The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800–804 (2000).

    Article  CAS  Google Scholar 

  6. Luna, A. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol. Biol. Cell 13, 866–879 (2002).

    Article  CAS  Google Scholar 

  7. Miura, K. et al. ARAP1: a point of convergence for Arf and Rho signaling. Mol. Cell 9, 109–119 (2002).

    Article  CAS  Google Scholar 

  8. Camera, P. et al. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nature Cell Biol. 5, 1071–1078 (2003).

    Article  CAS  Google Scholar 

  9. Chen, J. L., Lacomis, L., Erdjument-Bromage, H., Tempst, P. & Stamnes, M. Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett. 566, 281–286 (2004).

    Article  CAS  Google Scholar 

  10. Fucini, R. V. et al. Activated ADP-ribosylation factor assembles distinct pools of actin on golgi membranes. J. Biol. Chem. 275, 18824–18829 (2000).

    Article  CAS  Google Scholar 

  11. Fucini, R. V., Chen, J. L., Sharma, C., Kessels, M. M. & Stamnes, M. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell 13, 621–631 (2002).

    Article  CAS  Google Scholar 

  12. Basseres, D. S., Tizzei, E. V., Duarte, A. A., Costa, F. F. & Saad, S. T. ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein. Biochem. Biophys. Res. Commun. 294, 579–585 (2002).

    Article  Google Scholar 

  13. Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994).

    CAS  PubMed  Google Scholar 

  14. Zhang, C. J. et al. Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo. J. Cell Biol. 124, 289–300 (1994).

    Article  CAS  Google Scholar 

  15. Donaldson, J. G. & Jackson, C. L. Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 12, 475–482 (2000).

    Article  CAS  Google Scholar 

  16. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285 (1999).

    Article  CAS  Google Scholar 

  17. Robinson, M. S. & Kreis, T. E. Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effects of brefeldin A and G protein activators. Cell 69, 129–138 (1992).

    Article  CAS  Google Scholar 

  18. Teal, S., Hsu, V., Peters, P., Klausner, R. & Donaldson, J. An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem. 269, 3135–3138 (1994).

    CAS  PubMed  Google Scholar 

  19. Antonny, B., Beraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684 (1997).

    Article  CAS  Google Scholar 

  20. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  21. Valderrama, F. et al. Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic 2, 717–726 (2001).

    Article  CAS  Google Scholar 

  22. Percival, J. M. et al. Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol. Biol. Cell 15, 268–280 (2004).

    Article  CAS  Google Scholar 

  23. Olazabal, I. M. et al. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol. 12, 1413–1418 (2002).

    Article  CAS  Google Scholar 

  24. Carreno, S., Engqvist-Goldstein, A. E., Zhang, C. X., McDonald, K. L. & Drubin, D. G. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J. Cell Biol. 165, 781–788 (2004).

    Article  CAS  Google Scholar 

  25. Matas, O. B., Martinez-Menarguez, J. A. & Egea, G. Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic 5, 838–846 (2004).

    Article  CAS  Google Scholar 

  26. Schafer, D. A., D'Souza-Schorey, C. & Cooper, J. A. Actin assembly at membranes controlled by ARF6. Traffic 1, 896–907 (2000).

    Article  Google Scholar 

  27. Bonifacino, J. S. The GGA proteins: adaptors on the move. Nature Rev. Mol. Cell Biol. 5, 23–32 (2004).

    Article  CAS  Google Scholar 

  28. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    Article  CAS  Google Scholar 

  29. Niebuhr, K., Lingnau, A., Frank, R. & Wehland, J. in Cell Biology: A Laboratory Handbook (ed. Celis, J. E.) 398–403 (Academic, San Diego, 1998).

    Google Scholar 

  30. Prigent, M. et al. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163, 1111–1121 (2003).

    Article  CAS  Google Scholar 

  31. Kikuno, R. et al. HUGE: a database for human KIAA proteins, a 2004 update integrating HUGEppi and ROUGE. Nucleic Acids Res. 32, D502–D504 (2004).

    Article  CAS  Google Scholar 

  32. Sibarita, J. -B., Magnin, H. & De Mey, J. Proc. 2002 IEEE International Symposium on Biomedical Imaging 769–772 (2002).

  33. Macia, E., Chabre, M. & Franco, M. Specificities for the small G proteins ARF1 and ARF6 of the guanine nucleotide exchange factors ARNO and EFA6. J. Biol. Chem. 276, 24925–24930 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the Kazusa DNA Research Institute for the gift of the cDNA clone KIAA1424 and to D. Alessi for performing lipid overlay assay. We are grateful to E.G. Berger, J. Bertoglio, M. Bornens, V. W. Hsu, J. Wehland and I. Majoul for providing antibodies, and to D. Cassel, R. Cerione, A. Hall and P. Fort for plasmids. We would like to thank F. Perez and R. Pepperkok for helpful discussions throughout this study, and J. Plastino for critical reading of the manuscript. We also thank A. Letellier and C. Boulard for technical assistance. T.D. is the recipient of a post-doctoral fellowship from ARC (Association pour la Recherche sur le Cancer). This work was supported by an EC Training Network Grant HRPN-CT-2000-00081 (to P.C. and M.A.D.M.). Work in M.A.D.M.'s laboratory is supported by the Italian Association for Cancer Research (AIRC), Telethon Italia and the Italian Ministry for Universities and Research (MIUR). Work in P.C.'s laboratory is supported by grants from the CNRS, Institut Curie, La Fondation BNP-Paribas and La Ligue Nationale contre le Cancer ('équipe labellisée').

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Chavrier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 635 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, T., Paléotti, O., Mironov, A. et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol 7, 353–364 (2005). https://doi.org/10.1038/ncb1244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing