Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Speckle microscopic evaluation of microtubule transport in growing nerve processes

Abstract

Assembly of microtubules is fundamental to neuronal morphogenesis. Microtubules typically form crosslinked bundles in nerve processes, precluding resolution of single microtubules at the light microscopic level. Therefore, previous studies of microtubule transport in neurites have had to rely on indirect approaches. Here we show that individual microtubules can be visualized directly in the axonal shafts of Xenopus embryo neurons by using digital fluorescence microscopy. We find that, although the array of axonal microtubules is dynamic, microtubules are stationary relative to the substrate. These results argue against a model in which newly synthesized tubulin is transported down the axon in the form of microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct visualization of substructures in the array of axonal microtubules.
Figure 2: A speckle pattern of fluorescence along microtubules.
Figure 3: Fluorescence speckles are largely stationary relative to the substrate.
Figure 4: Electron microscopy of microtubules in the axonal shaft.
Figure 5: Fast axonal transport of tubulin-containing structures.

Similar content being viewed by others

References

  1. Lasek, R. J. & Hoffman, P. N. The neuronal cytoskeleton, axonal transport and axonal growth. Cell Motil. 3, 1021–1049 (1976).

    CAS  Google Scholar 

  2. Baas, P. W. Microtubules and axonal growth. Curr. Opin. Cell Biol. 9, 29–36 (1997).

    Article  CAS  Google Scholar 

  3. Hirokawa, N., Terada, S., Funakoshi, T. & Takeda, S. Slow axonal transport: the subunit transport model. Trends Cell Biol. 7, 384–388 ( 1997).

    Article  CAS  Google Scholar 

  4. Bray, D. The riddle of slow transport — an introduction. Trends Cell Biol. 7, 379 (1997).

    Article  CAS  Google Scholar 

  5. Okabe, S. & Hirokawa, N. Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343, 479–482 (1990).

    Article  CAS  Google Scholar 

  6. Reinch, S. S., Mitchison, T. J. & Kirschner, M. W. Microtubule polymer assembly and transport during axonal elongation. J. Cell Biol. 115, 365 –379 (1991).

    Article  Google Scholar 

  7. Ahmad, F. J. & Baas, P. W. Microtubules released from the neuronal centrosomes are transported into the axon. J. Cell Sci. 108, 2761–2769 (1995).

    CAS  PubMed  Google Scholar 

  8. Miller, K. W. & Joshi, H. C. Tubulin transport in neurons. J. Cell Biol. 133, 1355–1366 (1996).

    Article  CAS  Google Scholar 

  9. Slaughter, T., Wang, J. & Black, M. M. Microtubule transport from the cell body into the axons of growing neurons. J. Neurosci. 17, 5807 –5819 (1997).

    Article  CAS  Google Scholar 

  10. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237– 242 (1984).

    Article  CAS  Google Scholar 

  11. Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. & Borisy, G. G. Microtubule release from the centrosome . Proc. Natl Acad. Sci. USA 94, 5078– 5083 (1997).

    Article  CAS  Google Scholar 

  12. Wade, R. H. & Hyman, A. A. Microtubule structure and dynamics . Curr. Opin. Cell Biol. 9, 12– 17 (1997).

    Article  CAS  Google Scholar 

  13. Rodionov, V. I. & Borisy, G. G. Microtubule treadmilling in vivo. Science 275, 215–218 (1997).

    Article  CAS  Google Scholar 

  14. Vorobjev, I. A., Svitkina, T. M. & Borisy, G. G. Cytoplasmic assembly of microtubules in cultured cells. J. Cell Sci. 110, 2635– 2645 (1997).

    CAS  PubMed  Google Scholar 

  15. Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417–434 (1997).

    Article  CAS  Google Scholar 

  16. Tanaka, E. & Kirschner, M. W. Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115, 345–363 ( 1991).

    Article  CAS  Google Scholar 

  17. Schnapp, B. J. & Reese, T. S. Cytoplasmic structure in rapid-frozen axons. J. Cell Biol. 94, 667–679 (1982).

    Article  CAS  Google Scholar 

  18. Sabry, J., O’Connor, T. P. & Kirschner, M. W. Axonal transport of tubulin in Ti1 pioneer neurons in situ. Neuron 14, 1247– 1256 (1995).

    Article  CAS  Google Scholar 

  19. Waterman-Storer, C. M. & Salmon, E. D. How microtubules get fluorescent speckles. Biophys. J. 75, 2059–2069 (1998).

    Article  CAS  Google Scholar 

  20. Chang, S., Rodionov, V. I., Borisy, G. G. & Popov, S. V. Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth. J. Neurosci. 18, 821– 829 (1998).

    Article  CAS  Google Scholar 

  21. de-Miguel, F. E. & Vargas, J. Different determinants on growth and synapse formation in cultured neurons. Neuroreport 10, 761–765 ( 1997).

    Article  Google Scholar 

  22. Stewart, R., Allan, D. W. & McCaig, C. D. Lectins implicate specific carbohydrate domains in electric field stimulated nerve growth and guidance. J. Neurobiol. 30, 425–437 ( 1996).

    Article  CAS  Google Scholar 

  23. Zakharenko, S. & Popov, S. V. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077– 1086 (1998).

    Article  CAS  Google Scholar 

  24. Heidemann, S. R., Landers, J. M. & Hamborg, M. A. Polarity orientation of axonal microtubules. J. Cell Biol. 91, 661–665 (1981).

    Article  CAS  Google Scholar 

  25. Takeda, S., Funakoshi, T. & Hirokawa, N. Tubulin dynamics in neuronal axons of living zebrafish embryos. Neuron 14, 1257– 1264 (1995).

    Article  CAS  Google Scholar 

  26. Svitkina, T. M. & Borisy, G. G. Correlative light and electron microscopy of the cytoskeleton of cultured cells. Methods Enzymol. 298, 570–592 (1998).

    Article  CAS  Google Scholar 

  27. Bray, D. & Bunge, M. B. Serial analysis of microtubules of cultured rat sensory neurons. J. Neurocytol. 10, 589–605 (1981).

    Article  CAS  Google Scholar 

  28. Rodionov, V. I., Lim, S.-S., Gelfand, V. I. & Borisy, G. G. Microtubule dynamics in fish melanophores. J. Cell Biol. 126, 1455–1464 (1994).

    Article  CAS  Google Scholar 

  29. Hollenbeck, P. J. & Bray, D. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth. J. Cell Biol. 105, 2827 –2835 (1987).

    Article  CAS  Google Scholar 

  30. Hollenbeck, P. J. Products of endocytosis and autophagy are retrieved from axons by regulated organelle transport. J. Cell Biol. 121, 305–315 (1993).

    Article  CAS  Google Scholar 

  31. Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31 ( 1999).

    Article  CAS  Google Scholar 

  32. Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140, 246– 256 (1998).

    Article  Google Scholar 

  33. Ahmad, F. J., Yu, W., McNally, F. J. & Baas, P. W. An essential role for katanin in severing microtubules in the neuron. J. Cell Biol. 145, 305–315 ( 1999).

    Article  CAS  Google Scholar 

  34. Okabe, S. & Hirokawa, N. Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. J. Cell Biol. 117, 105–120 ( 1992).

    Article  CAS  Google Scholar 

  35. Okabe, S. & Hirokawa, N. Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon. J. Cell Biol. 120 , 1177–1186 (1993).

    Article  CAS  Google Scholar 

  36. Lim, S.-S., Edson, K. J., Letourneau, P. C. & Borisy, G. G. A test of microtubule translocation during neurite elongation. J. Cell Biol. 111, 123–130 (1990).

    Article  CAS  Google Scholar 

  37. Popov, S. V., Brown, A. & Poo, M.-m. Forward plasma membrane flow in growing nerve processes . Science 259, 244–246 (1993).

    Article  CAS  Google Scholar 

  38. Craig, A. M., Wyborski, R. J. & Banker, G. Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature 375, 592–594 (1995).

    Article  CAS  Google Scholar 

  39. Futerman, A. H. & Banker, G. A. The economics of neurite outgrowth — the addition of new membrane to growing axons . Trends Neurosci. 19, 144– 149 (1996).

    Article  CAS  Google Scholar 

  40. Popov, S. V. & Poo, M.-m. Diffusional transport of macromolecules in developing nerve processes. J. Neurosci. 12, 77–85 (1992).

    Article  CAS  Google Scholar 

  41. Anderson, M. J., Cohen, M. W. & Zorychta, E. Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J. Physiol. (Lond.) 268, 731–758 (1977).

    Article  CAS  Google Scholar 

  42. Svitkina, T. M., Verkhovsky, A. B. & Borisy, G. G. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J. Struct. Biol. 115, 290–303 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Baas, M. Kozlov, M. Rasenick and V. Rodionov for helpful discussions. This work was supported by NIH grants to S.V.P. and G.G.B.

Correspondence and requests for materials should be addressed to S.V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S., Svitkina, T., Borisy, G. et al. Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nat Cell Biol 1, 399–403 (1999). https://doi.org/10.1038/15629

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing