Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of BRCA1-IRIS, a BRCA1 locus product

Abstract

Breast cancer is the most common malignancy among women, and mutations in the BRCA genes produce increased susceptibility to these malignancies in certain families. Here we identify BRCA1-IRIS as a 1,399-amino-acid BRCA1 gene product encoded by an uninterrupted open reading frame that extends from codon 1 of the known BRCA1 open reading frame to a termination point 34 triplets into intron 11. Unlike full-length BRCA1 (p220), BRCA1-IRIS is exclusively chromatin-associated, fails to interact with BARD1 in vivo or in vitro and exhibits unique nuclear immunostaining. Unlike BRCA1FL (or p220), BRCA1-IRIS also co-immunoprecipitated with DNA-replication-licensing proteins and with known replication initiation sites. Suppression of BRCA1-IRIS expression hindered the normal departure of geminin from pre-replication complexes, and depressed the rate of cellular DNA replication and possibly initiation-related synthesis. In contrast, BRCA1-IRIS overexpression stimulated DNA replication. These data imply that endogenous BRCA1-IRIS positively influences the DNA replication initiation machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of BRCA1-IRIS.
Figure 2: Cloning of BRCA1-IRIS cDNA.
Figure 3: Localization and expression of BRCA1-IRIS and p220 in human cells and tissues.
Figure 4: Analysis of biological and biochemical properties of BRCA1-IRIS.
Figure 5: BRCA1-IRIS- and BRCA1-IRIS-associated proteins bind to DNA-replication-initiation sites in vivo.
Figure 6: Behaviour of certain pre-replication complex proteins and BRCA1-IRIS.
Figure 7: The effect of BRCA1-IRIS on DNA replication.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Hill, A.D., Doyle, J.M., McDermott, E.W. & O'Higgins, N.J. Hereditary breast cancer. Br. J. Surg. 84, 1334–1339 (1997).

    Article  CAS  Google Scholar 

  2. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  Google Scholar 

  3. Smith, S.A., Easton, D.F., Evans, D.G. & Ponder, B.A. Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nature Genet. 2, 128–131 (1992).

    Article  CAS  Google Scholar 

  4. Rice, J.C., Ozcelik, H., Maxeiner, P., Andrulis, I. & Futscher, B.W. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 9, 1761–1765 (2000).

    Article  Google Scholar 

  5. Chen, Y. et al. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 56, 3168–3172 (1996).

    CAS  PubMed  Google Scholar 

  6. Wilson, C.A. et al. Differential subcellular localization, expression and biological toxicity of BRCA1 and the splice variant BRCA1-Δ11b. Oncogene 14, 1–16 (1997).

    Article  CAS  Google Scholar 

  7. Lee, E.Y. BRCA1 and Chk1 in G2/M checkpoint: a new order of regulation. Cell Cycle. 1, 178–180 (2002).

    Article  CAS  Google Scholar 

  8. Deng, C.X. & Scott, F. Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene 19, 1059–1064 (2000).

    Article  CAS  Google Scholar 

  9. Hakem, R. et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    Article  CAS  Google Scholar 

  10. Gudas, J.M. et al. Cell-cycle regulation of BRCA1 messenger RNA in human breast epithelial cells. Cell Growth Differ. 7, 717–723 (1996).

    CAS  PubMed  Google Scholar 

  11. Chodosh, L.A. et al. Mammary gland development, reproductive history, and breast cancer risk. Cancer Res 59, 1765–1771s; discussion 1771s–1772s (1999).

    CAS  PubMed  Google Scholar 

  12. Magdinier, F., Dalla Venezia, N., Lenoir, G.M., Frappart, L. & Dante, R. BRCA1 expression during prenatal development of the human mammary gland. Oncogene 18, 4039–4043 (1999).

    Article  CAS  Google Scholar 

  13. Meza, J.E., Brzovic, P.S., King, M.C. & Klevit, R.E. Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J. Biol. Chem. 274, 5659–5665 (1999).

    Article  CAS  Google Scholar 

  14. Bochar, D.A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell. 102, 257–265 (2000).

    Article  CAS  Google Scholar 

  15. Yarden, R.I. & Brody, L.C. BRCA1 interacts with components of the histone deacetylase complex. Proc. Natl Acad. Sci. USA 96, 4983–4988 (1999).

    Article  CAS  Google Scholar 

  16. Scully, R. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 90, 425–435 (1997).

    Article  CAS  Google Scholar 

  17. Cohen, S.M., Brylawski, B.P., Cordeiro-Stone, M. & Kaufman, D.G. Mapping of an origin of DNA replication near the transcriptional promoter of the human HPRT gene. J. Cell. Biochem. 85, 346–356 (2002).

    Article  CAS  Google Scholar 

  18. Abdurashidova, G. et al. Start sites of bidirectional DNA synthesis at the human lamin B2 origin. Science. 287, 2023–2026 (2000).

    Article  CAS  Google Scholar 

  19. Tao, L., Dong, Z., Leffak, M., Zannis-Hadjopoulos, M. & Price, G. Major DNA replication initiation sites in the c-Myc locus in human cells. J. Cell Biochem. 78, 442–457 (2000).

    Article  CAS  Google Scholar 

  20. Yoon, Y., Sanchez, J.A., Brun, C. & Huberman, J.A. Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis. Mol. Cell. Biol. 15, 2482–2489 (1995).

    Article  CAS  Google Scholar 

  21. Taira, T., Iguchi-Ariga, S.M. & Ariga, H. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter. Mol. Cell. Biol. 14, 6386–6397 (1994).

    Article  CAS  Google Scholar 

  22. Kamath, S. & Leffak, M. Multiple sites of replication initiation in the human β-globin gene locus. Nucleic Acids Res. 29, 809–817 (2001).

    Article  CAS  Google Scholar 

  23. Avni, D. et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol. Cell 12, 735–746 (2003).

    Article  CAS  Google Scholar 

  24. Roy, I. et al. Efficient translocation and apoptosis induction by adenovirus encoded VP22-p53 fusion protein in human tumor cells in vitro. Anticancer Res. 22, 3185–3189 (2002).

    CAS  PubMed  Google Scholar 

  25. Zender, L. et al. Gene therapy by intrahepatic and intratumoral trafficking of p53–VP22 induces regression of liver tumors. Gastroenterology 123, 608–618 (2002).

    Article  CAS  Google Scholar 

  26. Ebihara, K. et al. Intron retention generates a novel isoform of the murine vitamin D receptor that acts in a dominant-negative way on the vitamin D signaling pathway. Mol. Cell. Biol. 16, 3393–3400 (1996).

    Article  CAS  Google Scholar 

  27. Solomon, D. et al. Cyclin D1 Splice Varients. Differential effects on localization, Rb phosphorylation, and cultural transformation. J. Biol. Chem. 278, 30339–30347 (2003).

    Article  CAS  Google Scholar 

  28. Kolpakova, E., Rusten, T.E. & Olsnes, S. Characterization and tissue expression of acidic fibroblast growth factor binding protein homologue in Drosophila melanogaster. Gene 310, 185–191 (2003).

    Article  CAS  Google Scholar 

  29. Burkhead, J.L., Abdel-Ghany, S.E., Morrill, J.M., Pilon-Smits, E.A. & Pilon, M. The Arabidopsis thaliana CUTA gene encodes an evolutionarily conserved copper binding chloroplast protein. Plant J. 34, 856–867 (2003).

    Article  CAS  Google Scholar 

  30. van Doorn, R. et al. A novel splice variant of the Fas gene in patients with cutaneous T-cell lymphoma. Cancer Res. 62, 5389–5392 (2002).

    CAS  PubMed  Google Scholar 

  31. Bloor, B.K., Rajarajan, A., Jaafary-Haghighat, K. & Odell, E.W. Transcription and expression of CD44 variant exons by oro-pharyngeal squamous cell carcinomas. Int. J. Oncol. 21, 907–913 (2002).

    CAS  PubMed  Google Scholar 

  32. Le Hir, H., Charlet-Berguerand, N., de Franciscis, V. & Thermes, C. 5′-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology. 63, 84–91 (2002).

    Article  CAS  Google Scholar 

  33. Liu, J.W., Chandra, D., Tang, S.H., Chopra, D. & Tang, D.G. Identification and characterization of Bimgamma, a novel proapoptotic BH3-only splice variant of Bim. Cancer Res. 62, 2976–2981 (2002).

    CAS  PubMed  Google Scholar 

  34. Flowers, J.M., Powell, J.F., Leigh, P.N., Andersen, P. & Shaw, C.E. Intron 7 retention and exon 9 skipping EAAT2 mRNA variants are not associated with amyotrophic lateral sclerosis. Ann. Neurol. 49, 643–649 (2001).

    Article  CAS  Google Scholar 

  35. Emmert, S., Schneider, T.D., Khan, S.G. & Kraemer, K.H. The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res. 29, 1443–1452 (2001).

    Article  CAS  Google Scholar 

  36. Lejeune, F., Cavaloc, Y. & Stevenin, J. Alternative splicing of intron 3 of the serine/arginine-rich protein 9G8 gene. Identification of flanking exonic splicing enhancers and involvement of 9G8 as a trans-acting factor. J. Biol. Chem. 276, 7850–7858 (2000).

    Article  Google Scholar 

  37. Celebi, J.T., Wanner, M., Ping, X.L., Zhang, H. & Peacocke, M. Association of splicing defects in PTEN leading to exon skipping or partial intron retention in Cowden syndrome. Hum. Genet. 107, 234–238 (2000).

    Article  CAS  Google Scholar 

  38. Lindahl, M., Timmusk, T., Rossi, J., Saarma, M. & Airaksinen, M.S. Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Mol. Cell. Neurosci. 15, 522–533 (2000).

    Article  CAS  Google Scholar 

  39. Williams R. et al. Detection of protein folding defects caused by BRCA1–BRCT truncation and missense mutations. J. Biol. Chem. 278, 53007–53016 (2003).

    Article  CAS  Google Scholar 

  40. Shao, N., Chai, Y.L., Shyam, E., Reddy, P. & Rao, V.N. Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene. 13, 1–7 (1996).

    CAS  PubMed  Google Scholar 

  41. Holt, J.T. et al. Growth retardation and tumour inhibition by BRCA1. Nature Genet. 12, 298–302 (1996).

    Article  CAS  Google Scholar 

  42. Gavin, K.A., Hidaka, M. & Stillman, B. Conserved initiator proteins in eukaryotes. Science. 270, 1667–1671 (1995).

    Article  CAS  Google Scholar 

  43. Tada, S. et al. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biol. 3, 107–113 (2001).

    Article  CAS  Google Scholar 

  44. Wohlschlegel, J.A. et al. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 290, 2309–2312 (2000).

    Article  CAS  Google Scholar 

  45. Tada, S., Li, A., Maiorano, D., Mechali, M., Blow, J.J. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biol. 3, 107–113 (2001).

    Article  CAS  Google Scholar 

  46. Bermejo, R., Vilaboa, N. & Cales, C. Regulation of CDC6, geminin, and CDT1 in human cells that undergo polyploidization. Mol. Biol. Cell 13, 3989–4000 (2002).

    Article  CAS  Google Scholar 

  47. Hodgson, B., Li, A., Tada, S. & Blow, J.J. Geminin becomes activated as an inhibitor of Cdt1/RLF-B following nuclear import. Curr. Biol. 16, 678–683 (2002).

    Article  Google Scholar 

  48. Magdinier, F., Ribieras, S., Lenoir, G.M., Frappart, L. & Dante, R. Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene 17, 3169–3176 (1998).

    Article  CAS  Google Scholar 

  49. Gayther, S. et al. Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nature Genet. 11, 428–433 (1995).

    Article  CAS  Google Scholar 

  50. Harlow, E. & Lane, D. Antibodies, a Laboratory Manual. (Cold Spring Harbor Laboratory, New York, 1988).

    Google Scholar 

  51. Xu, C.F. et al. Distinct transcription start sites generate two forms of BRCA1 mRNA. Hum. Mol. Genet. 4, 2259–2264 (1995).

    Article  CAS  Google Scholar 

  52. Coffman, F.D. et al. In vitro replication of plasmids containing human ribosomal gene sequence: Origin localization and dependence on an Aprotinin-binding cytosolic protein. Exp. Cell Res. 209, 123–132 (1993).

    Article  CAS  Google Scholar 

  53. Zink, D. et al. Structure and dynamics of human interphase chromosome territories in vivo. Hum. Genet. 102, 241–251 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Laskey for his comments following the reading of this manuscript. We are also grateful to V. Joukov for sharing his IMR90 cDNA library and D. Avni, for sharing the results of his unpublished data with us. We also thank J. Lane for technical assistance. This work was supported by grants from the National Cancer Institute (N.C.I.). W.E. was supported, in part, by a European Molecular Biology Organization (EMBO) Fellowship and in part by a “Massachusetts Department of Public Health Breast Cancer Research Grant”, number 30481126109. W.E. is currently supported by a grant from the N.C.I. Specialized Program of Research Excellence (SPORE) in breast cancer research at the Dana-Farber/Harvard Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wael M. ElShamy or David M. Livingston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Figures

Fig. S1, Fig. S2, Fig. S3, Fig. S4 and Table 1 (PDF 1223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElShamy, W., Livingston, D. Identification of BRCA1-IRIS, a BRCA1 locus product. Nat Cell Biol 6, 954–967 (2004). https://doi.org/10.1038/ncb1171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing