Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function

Abstract

Apollon (also known as BRUCE or BIRC6) is a large protein containing baculoviral-IAP-repeat (BIR) and ubiquitin-conjugating enzyme (UBC) domains at the amino- and carboxy termini, respectively. Apollon inhibits apoptosis, but its molecular and physiological function remains unclear. Here we report that Apollon binds to, ubiquitinates and facilitates proteasomal degradation of SMAC and caspase-9, which both contain IAP-binding motifs. Targeted disruption of Apollon in mice caused embryonic and neonatal lethality. Notably, SMAC induced apoptosis in Apollon-deficient cells, but not in Apollon-expressing cells. Furthermore, the IAP-binding motif of SMAC was required to induce apoptosis in Apollon-deficient cells. These results suggest that Apollon has an essential function in preventing SMAC-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apollon inhibits apoptosis.
Figure 2: Apollon binds to SMAC, Caspase-9 and HtrA2.
Figure 3: Ubiquitination of SMAC and Caspase-9 by Apollon.
Figure 4: Apollon facilitates degradation of SMAC and Caspase-9.
Figure 5: Targeted disruption of Bruce (Apollon) in Mice.
Figure 6: Apollon-deficient cells are more susceptible to apoptosis.
Figure 7: SMAC induces apoptosis in Apollon-deficient Cells.
Figure 8: SMAC induces apoptosis in Apollon-depleted cells, but not in XIAP-depleted cells.

Similar content being viewed by others

References

  1. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    CAS  PubMed  Google Scholar 

  2. Hengartner, M.O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    CAS  PubMed  Google Scholar 

  3. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).

    CAS  PubMed  Google Scholar 

  4. Reed, J.C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941–2953 (1999).

    CAS  PubMed  Google Scholar 

  5. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413 (2003).

    CAS  PubMed  Google Scholar 

  6. Nicholson, D.W. & Thornberry, N.A. Caspases: killer proteases. Trends Biochem. Sci. 22, 299–306 (1997).

    CAS  PubMed  Google Scholar 

  7. Salvesen, G.S. & Dixit, V.M. Caspases: intracellular signaling by proteolysis. Cell 91, 443–446 (1997).

    CAS  PubMed  Google Scholar 

  8. Reed, J.C. & Kroemer, G. Mechanisms of mitochondrial membrane permeabilization. Cell Death Differ. 7, 1145 (2000).

    CAS  PubMed  Google Scholar 

  9. Kroemer, G. & Reed, J.C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    CAS  PubMed  Google Scholar 

  10. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  11. Liu, X., Kim, C.N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    CAS  PubMed  Google Scholar 

  12. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  13. Verhagen, A.M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    CAS  PubMed  Google Scholar 

  14. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    CAS  PubMed  Google Scholar 

  15. Zou, H., Henzel, W.J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    CAS  PubMed  Google Scholar 

  16. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    CAS  PubMed  Google Scholar 

  17. Reed, J.C. Double identity for proteins of the Bcl-2 family. Nature 387, 773–776 (1997).

    CAS  PubMed  Google Scholar 

  18. Tsujimoto, Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J. Cell. Physiol. 195, 158–167 (2003).

    CAS  PubMed  Google Scholar 

  19. Deveraux, Q.L. & Reed, J.C. IAP family proteins-suppressors of apoptosis. Genes Dev. 13, 239–52 (1999).

    CAS  PubMed  Google Scholar 

  20. Hay, B.A. Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ. 7, 1045–1056 (2000).

    CAS  PubMed  Google Scholar 

  21. Salvesen, G.S. & Duckett, C.S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol. 3, 401–410 (2002).

    CAS  Google Scholar 

  22. Deveraux, Q.L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Roy, N., Deveraux, Q.L., Takahashi, R., Salvesen, G.S. & Reed, J.C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Deveraux, Q.L., Takahashi, R., Salvesen, G.S. & Reed, J.C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    CAS  PubMed  Google Scholar 

  25. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999).

    CAS  PubMed  Google Scholar 

  26. Yang, Y., Fang, S., Jensen, J.P., Weissman, A.M. & Ashwell, J.D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    CAS  PubMed  Google Scholar 

  27. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).

    CAS  PubMed  Google Scholar 

  28. Chen, Z. et al. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem. Biophys. Res. Commun. 264, 847–854 (1999).

    CAS  PubMed  Google Scholar 

  29. Hauser, H.P., Bardroff, M., Pyrowolakis, G. & Jentsch, S. A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell Biol. 141, 1415–1422 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vernooy, S.Y. et al. Drosophila Bruce can potently suppress Rpr- and Grim-dependent but not Hid-dependent cell death. Curr. Biol. 12, 1164–1168 (2002).

    CAS  PubMed  Google Scholar 

  31. Srinivasula, S.M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116 (2001).

    CAS  PubMed  Google Scholar 

  32. Hunter, A.M. et al. A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO. J. Biol. Chem. 278, 7494–7499 (2003).

    CAS  PubMed  Google Scholar 

  33. Yang, L. et al. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res. 63, 831–837 (2003).

    CAS  PubMed  Google Scholar 

  34. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    CAS  PubMed  Google Scholar 

  35. Qiu, X.B., Markant, S.L., Yuan, J. & Goldberg, A.L. Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J. 23, 800–810 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jesenberger, V. & Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nature Rev. Mol. Cell Biol. 3, 112–121 (2002).

    CAS  Google Scholar 

  37. Arama, E., Agapite, J. & Steller, H. Caspase activity and a specific cytochrome c are required for sperm differentiation in Drosophila. Dev. Cell 4, 687–697 (2003).

    CAS  PubMed  Google Scholar 

  38. Chai, J. et al. Molecular mechanism of Reaper–Grim–Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nature Struct. Biol. (2003).

  39. Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4, 757–769 (1999).

    CAS  PubMed  Google Scholar 

  40. Okada, H. et al. Generation and characterization of Smac/DIABLO-deficient mice. Mol. Cell. Biol. 22, 3509–3517 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakai, K. & Miyazaki, J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324 (1997).

    CAS  PubMed  Google Scholar 

  42. Dan, S. et al. Activation of c-Abl tyrosine kinase requires caspase activation and is not involved in JNK/SAPK activation during apoptosis of human monocytic leukemia U937 cells. Oncogene 18, 1277–1283 (1999).

    CAS  PubMed  Google Scholar 

  43. Naito, M., Nagashima, K., Mashima, T. & Tsuruo, T. Phosphatidylserine externalization is a downstream event of interleukin-1 β-converting enzyme family protease activation during apoptosis. Blood 89, 2060–2066 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Takahashi for critical reading of the manuscript, A. Tomida and N. Fujita for helpful discussion and H. Yamanaka and S. Ito for assistance in generation of the Bruce-knockout mice. This work was supported by Grants-in-Aid for Cancer Research from the Ministry of Education, Science, Sports and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihiko Naito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Y., Sekine, K., Kawabata, A. et al. Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol 6, 849–860 (2004). https://doi.org/10.1038/ncb1159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1159

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing