Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amplitude control of cell-cycle waves by nuclear import

Abstract

Propagation of waves of biochemical activities through consecutive stages of the cell cycle is essential to execute the steps of cell division in a strict temporal order. Mechanisms that ensure the proper amplitude and timing of these waves are poorly understood1. Using a synthetic gene circuit, we show that a transcriptional activator driven by yeast cell-cycle promoters propagates transcriptional oscillations with substantial damping. Although regulated nuclear translocation has been implicated in the timing of oscillatory events2,3, mathematical analysis shows that increasing the rate of nuclear transport is an example of a general regulatory principle, which enhances the fidelity of wave propagation. Indeed, increasing the constitutive import rate of the activator counteracts the damping of waves and concurrently preserves the intensity of the signal. In contrast to the regulatory range of nuclear transport, the range of mRNA turnover considerably limits transcriptional wave propagation. This classification of cellular processes outlines potential regulatory mechanisms that can contribute to faithful transmission of oscillations at different stages of the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constructs and properties of the transmission process.
Figure 2: Mathematical analysis of propagation of transcriptional oscillations.
Figure 3: Import rates of rtTA constructs and their effect on the PTR of the transmitted waves.
Figure 4: Transcript levels of untagged and NLS-tagged PCLN2-rtTA, and PTETO2CYC1-lacZ genes.
Figure 5: Attenuation of oscillations during the transmission process.

Similar content being viewed by others

References

  1. Georgi, A.B., Stukenberg, P.T. & Kirschner, M.W. Timing of events in mitosis. Curr. Biol. 12, 105–114 (2002).

    Article  CAS  Google Scholar 

  2. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743–758 (1991).

    Article  CAS  Google Scholar 

  3. Martinek, S., Inonog, S., Manoukian, A.S. & Young, M.W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779 (2001).

    Article  CAS  Google Scholar 

  4. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002).

    Article  CAS  Google Scholar 

  5. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).

    Article  CAS  Google Scholar 

  6. Breeden, L.L. Cyclin transcription: timing is everything. Curr. Biol. 10, R586–R588 (2000).

    Article  CAS  Google Scholar 

  7. Tanaka, S. & Diffley, J.F. Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev. 16, 2639–2649 (2002).

    Article  CAS  Google Scholar 

  8. MacKay, V.L., Mai, B., Waters, L. & Breeden, L.L. Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G(1)-to-S transition in budding yeast. Mol. Cell. Biol. 21, 4140–4148 (2001).

    Article  CAS  Google Scholar 

  9. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    Article  CAS  Google Scholar 

  10. Urlinger, S. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl Acad. Sci. USA 97, 7963–7968 (2000).

    Article  CAS  Google Scholar 

  11. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  12. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    Article  CAS  Google Scholar 

  13. Becskei, A., Seraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001).

    Article  CAS  Google Scholar 

  14. Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. & Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).

    Article  CAS  Google Scholar 

  15. Gorlich, D. et al. Importin provides a link between nuclear protein import and U snRNA export. Cell 87, 21–32 (1996).

    Article  CAS  Google Scholar 

  16. Edgington, N.P. & Futcher, B. Relationship between the function and the location of G1 cyclins in S. cerevisiae. J. Cell Sci. 114, 4599–4611 (2001).

    CAS  PubMed  Google Scholar 

  17. Wang, Y. et al. Precision and functional specificity in mRNA decay. Proc. Natl Acad. Sci. USA 99, 5860–5865 (2002).

    Article  CAS  Google Scholar 

  18. Thornton, B.R. & Toczyski, D.P. Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biol. 5, 1090–1094 (2003).

    Article  CAS  Google Scholar 

  19. Sveiczer, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J.J. & Novak, B. Modeling the fission yeast cell cycle: quantized cycle times in wee1–cdc25Delta mutant cells. Proc. Natl Acad. Sci. USA 97, 7865–7870 (2000).

    Article  CAS  Google Scholar 

  20. Cross, F.R. Two redundant oscillatory mechanisms in the yeast cell cycle. Dev. Cell 4, 741–752 (2003).

    Article  CAS  Google Scholar 

  21. Breeden, L.L. Periodic transcription: a cycle within a cycle. Curr. Biol. 13, R31–R38 (2003).

    Article  CAS  Google Scholar 

  22. Hasty, J., Dolnik, M., Rottschafer, V. & Collins, J.J. Synthetic gene network for entraining and amplifying cellular oscillations. Phys. Rev. Lett. 88, 148101 (2002).

    Article  Google Scholar 

  23. Pomerening, J.R., Sontag, E.D. & Ferrell, J.E. Jr Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003).

    Article  CAS  Google Scholar 

  24. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  Google Scholar 

  25. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993).

    Article  CAS  Google Scholar 

  26. Gill, T., Cai, T., Aulds, J., Wierzbicki, S. & Schmitt, M.E. RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol. Cell Biol. 24, 945–953 (2004).

    Article  CAS  Google Scholar 

  27. Becskei, A. & Mattaj, I.W. The strategy for coupling the RanGTP gradient to nuclear protein export. Proc. Natl Acad. Sci. USA 100, 1717–1722 (2003).

    Article  CAS  Google Scholar 

  28. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).

    Article  CAS  Google Scholar 

  29. Shulga, N. et al. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J. Cell Biol. 135, 329–339 (1996).

    Article  CAS  Google Scholar 

  30. Gilchrist, D., Mykytka, B. & Rexach, M. Accelerating the rate of disassembly of karyopherin.cargo complexes. J. Biol. Chem. 277, 18161–18172 (2002).

    Article  CAS  Google Scholar 

  31. Makhnevych, T., Lusk, C.P., Anderson, A.M., Aitchison, J.D. & Wozniak, R.W. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115, 813–823 (2003).

    Article  CAS  Google Scholar 

  32. Audibert, A., Weil, D. & Dautry, F. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol. Cell Biol. 22, 6706–6718 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to A. Amon at the Center for Cancer Research, Massachusetts Institute of Technology, for discussions throughout the progress of this work and for her support to M.G.B. We thank H. Blitzblau, I. W. Mattaj and A. Varshavsky for discussions, and W. Hillen for the rtTA(S2) construct. A.B. is a Long Term Fellow of the Human Frontiers Science Program. This work was supported by a grant from the National Institutes of Health (grant GM068957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander van Oudenaarden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becskei, A., Boselli, M. & Oudenaarden, A. Amplitude control of cell-cycle waves by nuclear import. Nat Cell Biol 6, 451–457 (2004). https://doi.org/10.1038/ncb1124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing