Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p

This article has been updated

Abstract

Myristoylation of ARF family GTPases is required for their association with Golgi and endosomal membranes, where they regulate protein sorting and the lipid composition of these organelles. The Golgi-localized ARF-like GTPase Arl3p/ARP lacks a myristoylation signal, indicating that its targeting mechanism is distinct from myristoylated ARFs. We demonstrate that acetylation of the N-terminal methionine of Arl3p requires the NatC Nα-acetyltransferase and that this modification is required for its Golgi localization. Chemical crosslinking and fluorescence microscopy experiments demonstrate that localization of Arl3p also requires Sys1p, a Golgi-localized integral membrane protein, which may serve as a receptor for acetylated Arl3p.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genes required for Golgi localization of GFP–GRIP and Arl1p–GFP identify candidate ARL pathway genes.
Figure 2: Arl3p(Q78L) rescues the growth defect of a ypt6Δ mutant and requires SYS1, MAK3 and MAK10 genes to be localized to the Golgi.
Figure 3: Acetylation of the amino-terminal methionine of Arl3p requires NatC Nα-acetyltransferase.
Figure 4: Chemical crosslinking identifies a complex containing Sys1p and Nα-acetylated Arl3p.

Similar content being viewed by others

Change history

  • 30 April 2004

    Amy Hin Yang to Amy Hin Yan

References

  1. Antonny, B., Beraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684 (1997).

    Article  CAS  Google Scholar 

  2. Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    Article  CAS  Google Scholar 

  3. Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003).

    Article  CAS  Google Scholar 

  4. Nie, Z., Hirsch, D.S. & Randazzo, P.A. Arf and its many interactors. Curr. Opin. Cell Biol. 15, 396–404 (2003).

    Article  CAS  Google Scholar 

  5. Dascher, C. & Balch, W.E. Dominant inhibitory mutants of ARF1 inhibit ER to Golgi transport and trigger the disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994).

    CAS  PubMed  Google Scholar 

  6. Kahn, R.A. et al. Mutational analysis of Saccharomyces cerevisiae ARF1. J. Biol. Chem. 270, 143–150 (1995).

    Article  CAS  Google Scholar 

  7. Gommel, D.U. et al. Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J. 20, 6751–6760 (2001).

    Article  CAS  Google Scholar 

  8. Gangi Setty, S.R., Shin, M.E., Yoshino, A., Marks, M.S. & Burd, C.G. Golgi Recruitment of GRIP Domain Proteins by Arf-like GTPase 1 Is Regulated by Arf-like GTPase 3. Curr. Biol. 13, 401–404 (2003).

    Article  Google Scholar 

  9. Panic, B., Whyte, J.R. & Munro, S. The ARF-like GTPases Arl1p and Arl3p Act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405–410 (2003).

    Article  CAS  Google Scholar 

  10. Barr, F.A. A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr. Biol. 9, 381–384 (1999).

    Article  CAS  Google Scholar 

  11. Munro, S. & Nichols, B.J. The GRIP domain — a novel Golgi-targeting domain found in several coiled-coil proteins. Curr. Biol. 9, 377–380 (1999).

    Article  CAS  Google Scholar 

  12. Kjer-Nielsen, L., Teasdale, R.D., van Vliet, C. & Gleeson, P.A. A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr. Biol. 9, 385–388 (1999).

    Article  CAS  Google Scholar 

  13. Panic, B., Perisic, O., Veprintsev, D.B., Williams, R.L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol. Cell 12, 863–874 (2003).

    Article  CAS  Google Scholar 

  14. Lu, L. & Hong, W. Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol. Biol. Cell 14, 3767–3781 (2003).

    Article  CAS  Google Scholar 

  15. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  Google Scholar 

  16. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  17. Tsukada, M. & Gallwitz, D. Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p. J. Cell Sci. 109, 2471–2481 (1996).

    CAS  PubMed  Google Scholar 

  18. Votsmeier, C. & Gallwitz, D. An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export. EMBO J. 20, 6742–6750 (2001).

    Article  CAS  Google Scholar 

  19. Polevoda, B. & Sherman, F. NatC Nα-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J. Biol. Chem. 276, 20154–20159 (2001).

    Article  CAS  Google Scholar 

  20. Bensen, E.S., Yeung, B.G. & Payne, G.S. Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins. Mol. Biol. Cell. 12, 13–26 (2001).

    Article  CAS  Google Scholar 

  21. Polevoda, B. & Sherman, F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325, 595–622 (2003).

    Article  CAS  Google Scholar 

  22. Kimura, Y. et al. N-terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch. Biochem. Biophys. 409, 341–348 (2003).

    Article  CAS  Google Scholar 

  23. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  24. Singer, J.M. & Shaw, J.M. Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc. Natl Acad. Sci. USA 100, 7644–7649 (2003).

    Article  CAS  Google Scholar 

  25. Williams, B.C. et al. Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr. Biol. 13, 2025–2036 (2003).

    Article  CAS  Google Scholar 

  26. Pesaresi, P. et al. Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell 15, 1817–1832 (2003).

    Article  CAS  Google Scholar 

  27. Petracek, M.E. & Longtine, M.S. PCR-based engineering of yeast genome. Methods Enzymol. 350, 445–469 (2002).

    Article  CAS  Google Scholar 

  28. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  29. Seron, K. et al. A yeast t-SNARE involved in endocytosis. Mol. Biol. Cell 9, 2873–2889 (1998).

    Article  CAS  Google Scholar 

  30. Shin, M.E., Ogburn, K.D., Varban, O.A., Gilbert, P.M. & Burd, C.G. FYVE domain targets Pib1p ubiquitin ligase to endosome and vacuolar membranes. J. Biol. Chem. 276, 41388–41393 (2001).

    Article  CAS  Google Scholar 

  31. Altschul, S.F. & Koonin, E.V. Iterated profile searches with PSI-BLAST–a tool for discovery in protein databases. Trends Biochem. Sci. 23, 444–447 (1998).

    Article  CAS  Google Scholar 

  32. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Marks, M. Chou, M. Lemmon, T. Graham, S. Emr and E. Bi for discussions, M. Chou for reading the manuscript, E. Bi and F. Luca for the use of their fluorescence microscopes, G. Van Duyne and J. Fields for the use of their cell lysis apparatus, and S. Munro for sharing unpublished information. We are indebted to C.-X. Yuan and the staff of the Proteomics Core Facility of the Genomics Institute and the Abramson Cancer Center, University of Pennsylvania, for assistance with the Arl3p mass spectrometry. This research was supported by a grant (GM61221) from the National Institutes of Health to C.G.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Burd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Information, Fig. S1 (PDF 3778 kb)

Supplementary Information, Fig. S2

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Supplementary Information, Fig. S5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setty, S., Strochlic, T., Tong, A. et al. Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6, 414–419 (2004). https://doi.org/10.1038/ncb1121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing