Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Subversion of phosphoinositide metabolism by intracellular bacterial pathogens

Abstract

Phosphoinositides are short-lived lipids, whose production at specific membrane locations in the cell enables the tightly controlled recruitment or activation of diverse cellular effectors involved in processes such as cell motility or phagocytosis. Bacterial pathogens have evolved molecular mechanisms to subvert phosphoinositide metabolism in host cells, promoting (or blocking) their internalization into target tissues, and/or modifying the maturation fate of their proliferating compartments within the intracellular environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phophoinositide metabolism flowchart (modified from ref. 9).
Figure 2: Phosphoinositide species involved in classical phagocytosis.
Figure 3: Signalling pathways exploited by bacterial pathogens.

Similar content being viewed by others

References

  1. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, 183–188 (1999).

    Article  Google Scholar 

  3. Brumell, J. H. & Grinstein, S. Role of lipid-mediated signal transduction in bacterial internalization. Cell. Microbiol. 5, 287–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Botelho, R. J., Scott, C. C. & Grinstein, S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr. Top. Microbiol. Immunol. 282, 1–30 (2004).

    CAS  PubMed  Google Scholar 

  5. Payrastre, B. et al. Phosphoinositides: key players in cell signalling, in time and space. Cell. Signal. 13, 377–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Greenberg, S., el Khoury, J., di Virgilio, F., Kaplan, E. M. & Silverstein, S. C. Ca2+-independent F-actin assembly and disassembly during Fc receptor-mediated phagocytosis in mouse macrophages. J. Cell Biol. 113, 757–767 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Defacque, H. et al. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol. Biol. Cell 13, 1190–1202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lemmon, M. A. Phosphoinositide recognition domains. Traffic 4, 201–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Botelho, R. J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coppolino, M. G. et al. Inhibition of phosphatidylinositol-4-phosphate 5-kinase Iα impairs localized actin remodeling and suppresses phagocytosis. J. Biol. Chem. 277, 43849–43857 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Cox, D. & Greenberg, S. Phagocytic signaling strategies: Fcã-receptor-mediated phagocytosis as a model system. Semin. Immunol. 13, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Vieira, O. V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marshall, J. G. et al. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemal subdomain during Fc γ receptor-mediated phagocytosis. J. Cell Biol. 153, 1369–1380 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cox, D., Tseng, C. C., Bjekic, G. & Greenberg, S. A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J. Biol. Chem. 274, 1240–1247 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Hilpela, P., Vartiainen, M. K. & Lappalainen, P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3 . Curr. Top. Microbiol. Immunol. 282, 117–163 (2004).

    CAS  PubMed  Google Scholar 

  17. Cox, D., Dale, B. M., Kashiwada, M., Helgason, C. D. & Greenberg, S. A regulatory role for Src homology 2 domain-containing inositol 5′-phosphatase (SHIP) in phagocytosis mediated by Fc γ receptors and complement receptor 3 (αMβ2; CD11b/CD18). J. Exp. Med. 193, 61–71 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao, X. et al. The inositol 3-phosphatase PTEN negatively regulates Fc γ receptor signaling, but supports Toll-like receptor 4 signaling in murine peritoneal macrophages. J. Immunol. 172, 4851–4857 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ellson, C. D. et al. Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr. Biol. 11, 1631–1635 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Zhan, Y., Virbasius, J. V., Song, X., Pomerleau, D. P. & Zhou, GW. The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J. Biol. Chem. 8, 4512–4518 (2002).

    Article  Google Scholar 

  23. Worby, C. A. & Dixon, J. E. Sorting out the cellular functions of sorting nexins. Nature Rev. Mol. Cell Biol. 3, 919–931 (2002).

    Article  CAS  Google Scholar 

  24. Cozier, G. E. et al. The phox homology (PX) domain-dependent, 3-phosphoinositidemediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 48730–48736 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Henry, R. M., Hoppe, A. D., Joshi, N. & Swanson, J. A. The uniformity of phagosome maturation in macrophages. J. Cell Biol. 164, 185–189 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Putzker, M., Sauer, H. & Sobe, D. Plague and other human infections caused by Yersinia species. Clin. Lab. 47, 453–466 (2001).

    CAS  PubMed  Google Scholar 

  27. Isberg, R. R. & Leong, J. M. Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Alrutz, M. A. et al. Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1–Arp 2/3 pathway that bypasses N-WASP function. Mol. Microbiol. 42, 689–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Wong, K. W. & Isberg, R. R. Arf6 and phosphoinositol-4-phosphate-5-kinase activities permit bypass of the Rac1 requirement for β1 integrin-mediated bacterial uptake. J. Exp. Med. 198, 603–614 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T. & Donaldson, J. G. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154, 1007–1017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Derrien, V. et al. A conserved C-terminal domain of EFA6-family ARF6-guanine nucleotide exchange factors induces lengthening of microvilli-like membrane protrusions. J. Cell Sci. 115, 2867–2879 (2002).

    CAS  PubMed  Google Scholar 

  32. Niedergang, F., Colucci-Guyon, E., Dubois, T., Raposo, G. & Chavrier, P. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J. Cell Biol. 161, 1143–1150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dussurget, O., Pizarro-Cerdá, J. & Cossart, P. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58, 587–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Mengaud, J., Ohayon, H., Gounon, P., Mege, R. -M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Shen, Y., Naujokas, M., Park, M. & Ireton, K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Ireton, K. et al. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274, 780–782 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Ireton, K., Payrastre, B. & Cossart, P. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J. Biol. Chem. 274, 17025–17032 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Maulik, G. et al. Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. J. Cell. Mol. Med. 6, 539–553 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banerjee, M. et al. GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation. Mol. Microbiol. 52, 257–2571 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bierne, H. et al. A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J. Cell Biol. 155, 101–112 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seveau, S., Bierne, H., Giroux, S., Prevost, M. C. & Cossart, P. Role of lipid rafts in E cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 166, 743–753 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bierne, H. et al. The invasion protein InIB from Listeria monocytogenes activates PLC-ã1 downstream from PI 3-kinase. Cell. Microbiol. 2, 465–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Alvarez-Dominguez, C., Barbieri, A. M., Beron, W., Wandinger-Ness, A. & Stahl, P. D. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome- endosome fusion. J. Biol. Chem. 271, 13834–13843 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Mansell, A., Khelef, N., Cossart, P. & O'Neill, L. A. Internalin B activates nuclear factor- kappa B via Ras, phosphoinositide 3-kinase, and Akt. J. Biol. Chem. 276, 43597–43603 2001).

    Article  CAS  PubMed  Google Scholar 

  45. Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Min, G. et al. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J. Mol. Biol. 317, 697–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Duncan, M. J., Li, G., Shin, J. S., Carson, J. L. & Abraham, S. N. Bacterial penetration of bladder epithelium through lipid rafts. J. Biol. Chem. 279, 18944–18951 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Philpott, D. J., Edgeworth, J. D. & Sansonetti, P. J. The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 575–586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals andplants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tran Van Nhieu, G., Caron, E., Hall, A. & Sansonetti, P. J. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuwae, A. et al. Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Functional analysis of IpaC. J. Biol. Chem. 276, 32230–32239 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Niebuhr, K. et al. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rameh, L. E., Tolias, K. F., Duckworth, B. C. & Cantley, L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell 100, 221–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. House, D., Bishop, A., Parry, C., Dougan, G. & Wain, J. Typhoid fever: pathogenesis and disease. Curr. Opin. Infect. Dis. 14, 573–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Pattni, K., Jepson, M., Stenmark, H. & Banting, G. A PtdIns(3)P-specific probe cycles on and off host cell membranes during Salmonella invasion of mammalian cells. Curr. Biol. 11, 1636–1642 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Scott, C. C., Cuellar-Mata, P., Matsuo, T., Davidson, H. W. & Grinstein, S. Role of 3-phosphoinositides in the maturation of Salmonella-containing vacuoles within host cells. J. Biol. Chem. 277, 12770–12776 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Chua, J. & Deretic, V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J. Biol. Chem. 279, 36982–36989 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. & Finlay, B. B. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1, 33–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Steele-Mortimer, O. et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem. 275, 37718–37724 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Marcus, S. L., Wenk, M. R., Steele-Mortimer, O. & Finlay, B. B. A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett. 494, 201–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Clarke, S. C., Haigh, R. D., Freestone, P. P. & Williams, P. H. Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin. Microbiol. Rev. 16, 365–378 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rosenshine, I. et al. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15, 2613–2624 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Celli, J., Olivier, M. & Finlay, B. B. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20, 1245–1258 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16, 463–496 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Clemens, D. L. & Horwitz, M. A. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181, 257–270 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Vergne, I., Chua, J. & Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin–PI3K hVPS34 cascade. J. Exp. Med. 198, 653–659 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fratti, R. A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl Acad. Sci. USA 100, 5437–5442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vieira, O. V. et al. Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol. Cell. Biol. 24, 4593–4604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vergne, I. et al. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol. Biol. Cell 15, 751–760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anes, E. et al. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nature Cell Biol. 5, 793–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Du, G. et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J. Cell Biol. 162, 305–315 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gozani, O. et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Clarke, J. H. Lipid signalling: picking out the PIPs. Curr. Biol. 13, R815–R817 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizarro-Cerdá, J., Cossart, P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6, 1026–1033 (2004). https://doi.org/10.1038/ncb1104-1026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1104-1026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing