Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

High-speed mass transit for poxviruses on microtubules

Commuters can ride a high-speed mass-transit system from the city centre to the suburbs and then engage a private vehicle for the final leg home. Similarly, vaccinia virions travel to the cell periphery on microtubule tracks, disembark near the plasma membrane, and acquire individual actin tails for propulsion on microvilli towards adjacent cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram showing the intracellular transport and egress of vaccinia virus.
Figure 2: Pre-membrane (a) and post-membrane (b) fusion models for the formation of actin tails.

References

  1. Sodeik, B. Trends Microbiol. 8, 465–472 (2000).

    Article  CAS  Google Scholar 

  2. Ploubidou, A. & Way, M. Curr. Opin. Cell Biol. 13, 97–105 (2001).

    Article  CAS  Google Scholar 

  3. Ward, B. M. & Moss, B. J. Virol. 75, 4802–4813 (2001).

    Article  CAS  Google Scholar 

  4. Hollinshead, M. et al. J. Cell Biol. 154, 389–402 (2001).

    Article  CAS  Google Scholar 

  5. Rietdorf, J. et al. Nature Cell Biol. 3, 992–1000 (2001).

    Article  CAS  Google Scholar 

  6. Moss, B. in Fields Virology 4th edn (eds Knipe, D. M. & Howley, P. M.) Vol. 2, 2849–2883 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  7. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Nature 378, 636–638 (1995).

    Article  CAS  Google Scholar 

  8. Frischknecht, F. et al. Nature 401, 926–929 (1999).

    Article  CAS  Google Scholar 

  9. Moreau, V. et al. Nature Cell Biol. 2, 441–448 (2000).

    Article  CAS  Google Scholar 

  10. Blasco, R. & Moss, B. J. Virol. 66, 4170–4179 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Blasco, R., Sisler, J. R. & Moss, B. J. Virol. 67, 3319–3325 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Parkinson, J. E. & Smith, G. L. Virology 204, 376–390 (1994).

    Article  CAS  Google Scholar 

  13. Wolffe, E. J., Weisberg, A. S. & Moss, B. Virology 244, 20–26 (1998).

    Article  CAS  Google Scholar 

  14. Rottger, S., Frischknecht, F., Reckmann, I., Smith, G. L. & Way, M. J. Virol. 73, 2863–2875 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van Eijl, H., Hollinshead, M. & Smith, G. L. Virology 271, 26–36 (2000).

    Article  CAS  Google Scholar 

  16. Wolffe, E. J., Weisberg, A. & Moss, B. J. Virol. 75, 303–310 (2001).

    Article  CAS  Google Scholar 

  17. Ward, B. M. & Moss, B. J. Virol. 75 (in the press, 2001).

  18. Gruenheid, S. et al. Nature Cell Biol. 3, 856–859 (2001).

    Article  CAS  Google Scholar 

  19. Ploubidou, A. et al. EMBO J. 19, 3932–3944 (2000).

    Article  CAS  Google Scholar 

  20. Sanderson, C. M., Hollinshead, M. & Smith, G. L. J. Gen. Virol. 81, 47–58 (2000).

    Article  CAS  Google Scholar 

  21. Bray, D. Cell Movements: From Molecules to Motility 2nd edn, 372 (Garland, New York, 2001).

    Google Scholar 

  22. Liu, W. J. et al. Virology 282, 237–244 (2001).

    Article  CAS  Google Scholar 

  23. Smith, G. A., Gross, S. P. & Enquist, L. W. Proc. Natl Acad. Sci. USA 98, 3466–3470 (2001).

    Article  CAS  Google Scholar 

  24. Sodeik, B., Ebersold, M. W. & Helenius, A. J. Cell Biol. 136, 1007–1021 (1997).

    Article  CAS  Google Scholar 

  25. Suomalainen, M. et al. J. Cell Biol. 144, 657–672 (1999).

    Article  CAS  Google Scholar 

  26. Mas, P. & Beachy, R. N. J. Cell Biol. 147, 945–958 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, B., Ward, B. High-speed mass transit for poxviruses on microtubules. Nat Cell Biol 3, E245–E246 (2001). https://doi.org/10.1038/ncb1101-e245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-e245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing