Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis

Abstract

Coliform bacteria detect chemical attractants by means of a membrane-associated cluster of receptors and signalling molecules. We have used recently determined molecular structures, in conjunction with plastic models generated by three-dimensional printer technology, to predict how the proteins of the complex are arranged in relation to the plasma membrane. The proposed structure is a regular two-dimensional lattice in which the cytoplasmic ends of chemotactic-receptor dimers are inserted into a hexagonal array of CheA and CheW molecules. This structure creates separate compartments for adaptation and downstream signalling, and indicates a possible basis for the spread of activity within the cluster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core region of CheA.
Figure 2: Proposed binding of CheA to CheW.
Figure 3: Proposed binding of CheW to Tsr.
Figure 4: Structural unit of the lattice.
Figure 5: Hexagonal network.

Similar content being viewed by others

References

  1. Dixon, J. S. Evaluation of the CASP2 docking section. Proteins 1 (suppl.), 198–204 ( 1997).

    Article  Google Scholar 

  2. Skawinsky, W. J. et al. The application of stereolithography to the fabrication of accurate molecular models. J. Mol. Graphics 13, 126–135 (1995).

    Article  Google Scholar 

  3. Bailey, M. J., Schulten, K. & Johnson, J. E. The use of solid physical models for the study of macromolecular assembly. Curr. Opin. Struct. Biol. 8, 202–208 (1998).

    Article  CAS  Google Scholar 

  4. Maddock, J. R. & Shapiro, L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723 (1993).

    Article  CAS  Google Scholar 

  5. Eisenbach, M. Control of bacterial chemotaxis. Mol. Microbiol. 20 , 903–910 (1996).

    Article  CAS  Google Scholar 

  6. Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. & Danielson, M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 ( 1997).

    Article  CAS  Google Scholar 

  7. Armitage, J. P. Bacterial tactic responses. Adv. Micro. Phys. 41, 229–289 (1999).

    Article  CAS  Google Scholar 

  8. Bilwes, A. M., Alex, L. A., Crane, B. R. & Simon, M. I. Structure of CheA, a signal-transducing histidine kinase. Cell 96, 131–141 ( 1999).

    Article  CAS  Google Scholar 

  9. McEvoy, M. M., Hausrath, A. C., Randolph, G. B., Remington, S. J. & Dahlquist, F. W. Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway. Proc. Natl Acad. Sci. USA 95, 7333–7338 (1998).

    Article  CAS  Google Scholar 

  10. Morrison, T. B. & Parkinson, J. S. Liberation of an interaction domain from the phosphotransfer region of CheA, a signaling kinase of Escherichia coli. Proc. Natl Acad. Sci. USA 91, 5485–5489 (1994).

    Article  CAS  Google Scholar 

  11. Bourret, R. B., Davagnino, J. & Simon, M. I. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J. Bacteriol. 175, 2097–2101 ( 1993).

    Article  CAS  Google Scholar 

  12. Morrison, T. B. & Parkinson, J. S. A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling. J. Bacteriol. 179, 5543–5550 (1997).

    Article  CAS  Google Scholar 

  13. Liu, J. & Parkinson, J. S. Genetic evidence for interaction between CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli. J. Bacteriol. 173, 4941– 4951 (1991).

    Article  CAS  Google Scholar 

  14. Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  15. Kim, K. K., Yokota, H. & Kim, S.-H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787–792 (1999).

    Article  CAS  Google Scholar 

  16. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  17. Bass, R. B., Coleman, M. D. & Falke, J. J. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies. Biochemistry 38, 9317– 9327 (1999).

    Article  CAS  Google Scholar 

  18. Le Moual, H. & Koshland, D. E. Jr Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J. Mol. Biol. 261, 568 –585 (1996).

    Article  CAS  Google Scholar 

  19. Gegner, J. A., Graham, D. R., Roth, A. F. & Dahlquist, F. W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70, 975–982 (1992).

    Article  CAS  Google Scholar 

  20. Scharf, B. E., Fahrner, K. A. & Berg, H. C. CheZ has no effect on flagellar motors activated by CheY13DK106YW. J. Bacteriol. 180, 5123–5128 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. DeFranco, A. L. & Koshland, D. E. Jr Molecular cloning of chemotaxis genes and overproduction of gene products in the bacterial sensing system. J. Bacteriol. 147, 390– 400 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hazelbauer, G. L. & Harayama, S. Sensory transduction in bacterial chemotaxis. Int. Rev. Cytol. 81, 33–70 (1983).

    Article  CAS  Google Scholar 

  23. Li, G. & Weis, R. M. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100, 357– 365 (2000).

    Article  CAS  Google Scholar 

  24. Bray, D. & Bourret, R. B. Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol. Biol. Cell 6 , 1367–1380 (1995).

    Article  CAS  Google Scholar 

  25. Liu, Y., Levit, M., Lurz, R., Surette, M. G. & Stock, J. B. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J. 16, 7231–7240 ( 1997).

    Article  CAS  Google Scholar 

  26. Borkovich, K. A., Alex, L. A. & Simon, M. I. Attenuation of sensory receptor signaling by covalent modification. Proc. Natl Acad. Sci. USA 89, 6756–6760 (1992).

    Article  CAS  Google Scholar 

  27. Hazelbauer, G. L., Park, C. & Nowlin, D. M. Adaptational “crosstalk” and the crucial role of methylation in chemotactic migration by Escherichia coli. Proc. Natl Acad. Sci. USA 86, 1448– 1452 (1989).

    Article  CAS  Google Scholar 

  28. Subbaramaiah, K. & Simms, S. A. Photolabeling of CheR methyltransferase with S-adenosyl-L-methionine (AdoMet). Studies on the AdoMet binding site. J. Biol. Chem. 267, 8636–8642 (1992).

    CAS  PubMed  Google Scholar 

  29. Wu, J., Li, J., Li, G., Long, D. G. & Weis, R. M. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry 35, 4984–4993 (1996).

    Article  CAS  Google Scholar 

  30. Barnakov, A. N., Barnakova, L. A. & Hazelbauer, G. L. Efficient adaptational demethylation of chemoreceptors requires the same enzyme-docking site as efficient methylation. Proc. Natl Acad. Sci. USA 96, 10667– 10672 (1999).

    Article  CAS  Google Scholar 

  31. Li, J., Swanson, R. V., Simon, M. I. & Weis, R. M. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 34, 14626– 14636 (1995).

    Article  CAS  Google Scholar 

  32. Segall, J. E., Manson, M. D. & Berg, H. C. Signal processing times in bacterial chemotaxis. Nature 296, 855–857 ( 1982).

    Article  CAS  Google Scholar 

  33. Khan, S., Amoyaw, K., Spudich, J. L., Reid, G. P. & Trentham, D. R. Bacterial chemoreceptor signaling probed by flash photorelease of a caged serine. Biophys. J. 62, 67–68 (1992).

    Article  CAS  Google Scholar 

  34. Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85– 88 (1998).

    Article  CAS  Google Scholar 

  35. Duke, T. A. J. & Bray, D. Heightened sensitivity of a lattice of membrane receptors. Proc. Natl Acad. Sci. USA 96, 10104–10108 (1999).

    Article  CAS  Google Scholar 

  36. Hazelbauer, G. L. & Engström, P. Parallel pathways for transduction of chemotactic signals in Escherichia coli. Nature 283, 98–100 ( 1980).

    Article  CAS  Google Scholar 

  37. Feng, X., Baumgartner, J. W. & Hazelbauer, G. L. High- and low-abundance chemoreceptors in Escherichia coli: differential activities associated with closely related cytoplasmic domains. J. Bacteriol. 179, 6714– 6720 (1997).

    Article  CAS  Google Scholar 

  38. Weerasuriya, S., Schneider, B. M. & Manson, M. D. Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar–Tap and Tap–Tar Hybrids. J. Bacteriol. 180, 914–920 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Humphrey, W., Dalke, A. & Schulten, K. VMD — visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  40. Sayle, R. & Milner-White, E. J. RasMol: biomolecular graphics for all. Trends Biochem. Sci. 20, 374 (1995).

    Article  CAS  Google Scholar 

  41. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 ( 1997).

    Article  CAS  Google Scholar 

  42. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. W. Dahlquist, A. M. Bilwes and S. H. Kim for atomic coordinates of chemotaxis proteins, and F. W. Dahlquist for criticism of the manuscript. T.S.S. was supported by a Glaxo International Scholarship and an ORS Award from CVCP. N.L.N. was supported by an EMBO long-term fellowship. This work was supported by a grant from the UK Medical Research Council (to D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Bray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, T., Le Novère, N., Levin, M. et al. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat Cell Biol 2, 792–796 (2000). https://doi.org/10.1038/35041030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing