Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein

Abstract

The formation of branched epithelial networks is fundamental to the development of many organs, such as the lung, the kidney or the vasculature. Little is known about the mechanisms that control cell rearrangements during tubulogenesis and regulate the size of individual tubes. Recent studies indicate that whereas the basal surface of tube cells interacts with the surrounding tissues and helps to shape the ramification pattern of tubular organs, the apical surface has an important role in the regulation of tube diameter and tube growth. Here we report that two proteins, Piopio (Pio) and Dumpy (Dp), containing a zona pellucida (ZP) domain are essential for the generation of the interconnected tracheal network in Drosophila melanogaster. Pio is secreted apically, accumulates in the tracheal lumen and possibly interacts with Dp through the ZP domains. In the absence of Pio and Dp, multicellular tubes do not rearrange through cell elongation and cell intercalation to form narrow tubes with autocellular junctions; instead they are transformed into multicellular cysts, which leads to a severe disruption of the branched pattern. We propose that an extracellular matrix containing Pio and Dp provides a structural network in the luminal space, around which cell rearrangements can take place in an ordered fashion without losing interconnections. Our results suggest that a similar structural role might be attributed to other ZP-domain proteins in the formation of different branched organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of a novel tracheal phenotype.
Figure 2: Expression of pio during embryonic development and localization of Pio protein.
Figure 3: Pio is specifically required for the formation of branches with autocellular AJs.
Figure 4: Pio and Dp are required to provide a barrier for autocellular AJ formation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Metzger, R.J. & Krasnow, M.A. Genetic control of branching morphogenesis. Science 284, 1635–1639 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Affolter, M. et al. Tube or not tube. Remodeling epithelial tissues by branching morphogenesis. Dev. Cell 4, 11–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Uv, A., Cantera, R. & Samakovlis, C. Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumping problems. Trends Cell Biol. 13, 301–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Buechner, M. Tubes and the single C. elegans excretory cell. Trends Cell Biol. 12, 479–484 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hogan, B.L. & Kolodziej, P.A. Organogenesis: molecular mechanisms of tubulogenesis. Nature Rev. Genet. 3, 513–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. O'Brien, L.E., Zegers, M.M. & Mostov, K.E. Building epithelial architecture: insights from three-dimensional culture models. Nature Rev. Mol. Cell Biol. 3, 531–537 (2002).

    Article  CAS  Google Scholar 

  7. Lubarsky, B. & Krasnow, M.A. Tube morphogenesis. Making and shaping biological tubes. Cell 112, 19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Myat, M.M. & Andrew, D.J. Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell 111, 879–891 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Lecuit, T. & Pilot, F. Developmental control of cell morphogenesis: a focus on membrane growth. Nature Cell Biol. 5, 103–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Samakovlis, C. et al. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122, 1395–1407 (1996).

    CAS  PubMed  Google Scholar 

  11. Affolter, M. et al. The Drosophila SRF homolog is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development. Development 120, 743–753 (1994).

    CAS  PubMed  Google Scholar 

  12. Wilkin, M.B. et al. Drosophila Dumpy is a gigantic extracellular protein required to maintain tension at epidermal-cuticle attachment sites. Curr. Biol. 10, 559–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bork, P. & Sander, C. A large domain common to sperm receptors (Zp2 and Zp3) and TGF-β type III receptor. FEBS Lett. 300, 237–240 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Wassarman, P.M., Jovine, L. & Litscher, E.S. A profile of fertilization in mammals. Nature Cell Biol. 3, E59–E64 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Tepass, U., Theres, C. & Knust, E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Oda, H. & Tsukita, S. Dynamic features of adherens junctions during Drosophila embryonic epithelial morphogenesis revealed by a Dα-catenin–GFP fusion protein. Dev. Genes Evol. 209, 218–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ribeiro, C., Ebner, A. & Affolter, M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev. Cell 2, 677–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Jovine, L., Qi, H., Williams, Z., Litscher, E. & Wassarman, P.M. The ZP domain is a conserved module for polymerization of extracellular proteins. Nature Cell Biol. 4, 457–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Li, D.Y. et al. Defective angiogenesis in mice lacking endoglin. Science 284, 1534–1537 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. McAllister, K.A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet. 8, 345–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prout, M., Damania, Z., Soong, J., Fristrom, D. & Fristrom, J.W. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. Genetics 146, 275–285 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brand, A. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  25. Shiga, Y., Tanaka-Matakasu, M. & Hayashi, S. A nuclear GFP β-galacotosidase fusion protein as a marker for mophogenesis in living Drosophila. Dev. Growth Differ. 38, 99–106 (1996).

    Article  CAS  Google Scholar 

  26. Verkhusha, V.V., Tsukita, S. & Oda, H. Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP–actin fusion protein. FEBS Lett. 445, 395–401 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Brand, A. GFP in Drosophila. Trends Genet. 11, 324–325 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Patel, N.H. Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol. 44, 445–487 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Brown and C. Bökel for communicating results before publication; K. Matthews and the Bloomington stock centre for fly strains; M. Neumann and P. Wassarman for discussion; C. Cabernard for technical help; E. Knust and N. Patel for providing large quantities of anti-Crb and monoclonal antibody 2A12, respectively; and N. C. Grieder and D. Ladle for comments on the manuscript. Financial support was provided by HFSPO, the Swiss National Science Foundation and the Kantons Basel-Stadt and Basel-Land. A.J. acknowledges EMBO and Roche Research Foundation postdoctoral fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Affolter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaźwińska, A., Ribeiro, C. & Affolter, M. Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nat Cell Biol 5, 895–901 (2003). https://doi.org/10.1038/ncb1049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing