Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria

Abstract

Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated σ-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro actin assembly by LBP.
Figure 2: Actin nucleation by mycobacterial phagosomes in vitro.
Figure 3: Effects of lipids on actin nucleation by live M. avium-containing phagosomes.
Figure 4: Effects of lipids on actin assembly in infected macrophages.
Figure 5: Effects of lipids on acidification and phagosome fusion with late endocytic organelles.
Figure 6: Secretion of NO and killing of mycobacteria.

Similar content being viewed by others

References

  1. Barry, C.E. 3rd. Interpreting cell wall 'virulence factors' of Mycobacterium tuberculosis. Trends Microbiol. 9, 237–241 (2001).

    Article  CAS  Google Scholar 

  2. Kaufmann, S.H. Is the development of a new tuberculosis vaccine possible? Nature Med. 6, 955–960 (2000).

    Article  CAS  Google Scholar 

  3. Flynn, J.L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  Google Scholar 

  4. Nathan, C. & Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  Google Scholar 

  5. Vieira, O.V., Botelho, R.J. & Grinstein, S. Phagosome maturation: aging gracefully. Biochem. J. 366, 689–704 (2002).

    Article  CAS  Google Scholar 

  6. Clemens, D.L. Characterization of the Mycobacterium tuberculosis phagosome. Trends Microbiol. 4, 113–118 (1996).

    Article  CAS  Google Scholar 

  7. Russell, D.G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    Article  CAS  Google Scholar 

  8. Haas, A. Reprogramming the phagocytic pathway–intracellular pathogens and their vacuoles. Mol. Membrane Biol. 15, 103–121 (1998).

    Article  CAS  Google Scholar 

  9. Tjelle, T.E., Lovdal, T. & Berg, T. Phagosome dynamics and function. Bioessays 22, 255–263 (2000).

    Article  CAS  Google Scholar 

  10. Fischer, K. et al. Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J. Immunol. 167, 2187–2192 (2001).

    Article  CAS  Google Scholar 

  11. Pieters, J. Entry and survival of pathogenic mycobacteria in macrophages. Microbes Infect. 3, 249–255 (2001).

    Article  CAS  Google Scholar 

  12. Blackwell, J.M. et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 3, 773–784 (2001).

    Article  CAS  Google Scholar 

  13. Via, L.E. et al. Effects of cytokines on mycobacterial phagosome maturation. J. Cell Sci. 111, 897–905 (1998).

    CAS  PubMed  Google Scholar 

  14. Akaki, T., Tomioka, H., Shimizu, T., Dekio, S. & Sato, K. Comparative roles of free fatty acids with reactive nitrogen intermediates and reactive oxygen intermediates in expression of the anti-microbial activity of macrophages against Mycobacterium tuberculosis. Clin. Exp. Immunol. 121, 302–310 (2000).

    Article  CAS  Google Scholar 

  15. Defacque, H. et al. Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes. EMBO J. 19, 199–212 (2000).

    Article  CAS  Google Scholar 

  16. Desjardins, M. et al. Molecular characterization of phagosomes. J. Biol. Chem. 269, 32194–32200 (1994).

    CAS  PubMed  Google Scholar 

  17. Desjardins, M., Huber, L.A., Parton, R.G. & Griffiths, G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 24, 677–688 (1994).

    Article  Google Scholar 

  18. Garin, J. et al. The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180 (2001).

    Article  CAS  Google Scholar 

  19. Defacque, H. et al. Actin assembly induced by polylysine beads or purified phagosomes: quantitation by a new flow cytometry assay. Cytometry 41, 46–54 (2000).

    Article  CAS  Google Scholar 

  20. Defacque, H. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol. Biol. Cell 13, 1190–1202 (2002).

    Article  CAS  Google Scholar 

  21. Emans, N., Nzala, N.N. & Desjardins, M. Protein phosphorylation during phagosome maturation. FEBS Lett. 398, 37–42 (1996).

    Article  CAS  Google Scholar 

  22. Jahraus, A. et al. ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol. Biol. Cell 12, 155–170 (2001).

    Article  CAS  Google Scholar 

  23. Holowka, D. & Baird, B. Antigen-mediated IGE receptor aggregation and signaling: a window on cell surface structure and dynamics. Annu. Rev. Biophys. Biomol. Struct. 25, 79–112 (1996).

    Article  CAS  Google Scholar 

  24. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  25. Caroni, P. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J. 20, 4332–4336 (2001).

    Article  CAS  Google Scholar 

  26. Rozelle, A.L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  Google Scholar 

  27. Dermine, J.F. et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J. Biol. Chem. 276, 18507–18512 (2001).

    Article  CAS  Google Scholar 

  28. Bornfeldt, K.E. et al. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J. Cell Biol. 130, 193–206 (1995).

    Article  CAS  Google Scholar 

  29. Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 476, 55–57 (2000).

    Article  CAS  Google Scholar 

  30. Hannun, Y.A., Luberto, C. & Argraves, K.M. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40, 4893–4903 (2001).

    Article  CAS  Google Scholar 

  31. Kuehnel, M.P. et al. Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis: phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cell Microbiol. 3, 551–566 (2001).

    Article  CAS  Google Scholar 

  32. Guerin, I. & de Chastellier, C. Pathogenic mycobacteria disrupt the macrophage actin filament network. Infect. Immun. 68, 2655–2662 (2000).

    Article  CAS  Google Scholar 

  33. Sturgill-Koszycki, S., Haddix, P.L. & Russell, D.G. The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18, 2558–2565 (1997).

    Article  CAS  Google Scholar 

  34. Hackam, D.J. et al. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J. Biol. Chem. 272, 29810–29820 (1997).

    Article  CAS  Google Scholar 

  35. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).

    Article  CAS  Google Scholar 

  36. Goni, F.M. & Alonso, A. Structure and functional properties of diacylglycerols in membranes. Prog. Lipid Res. 38, 1–48 (1999).

    Article  CAS  Google Scholar 

  37. Paul, K.P. et al. Influence of n-6 and n-3 polyunsaturated fatty acids on the resistance to experimental tuberculosis. Metabolism 46, 619–624 (1997).

    Article  CAS  Google Scholar 

  38. Chang, H.R. et al. Fish oil decreases natural resistance of mice to infection with Salmonella typhimurium. Metabolism 41, 1–2 (1992).

    Article  CAS  Google Scholar 

  39. Kaplan, G.J., Fraser, R.I. & Comstock, G.W. Tuberculosis in Alaska. Am. Rev. Respir. Disease 105, 920–926 (1970).

    Google Scholar 

  40. Bang, H.O. & Dyerberg, J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. Adv. Nutr. Res. 3, 1–22 (1980).

    CAS  Google Scholar 

  41. Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. & Jacobs, W.R. Jr. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1199 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the following for their support and suggestions: C. Dennison, E. Elliott, H. Goodfellow, R. Goethe, A. Haas, R. Hodge, D. Holden, S. Kuznetsov, C. Roy, S. Trachtenberg, K. Unsworth, P. Valentin-Weigand and the members of the EMBL photolab, especially U. Ringeisen. E. Anes's work was supported by Fundaçâo para a Ciência e a Tecnologia (FCT) grant POCTI/38983/BCI/2001 with co-participation of the EU fund FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Griffiths.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anes, E., Kühnel, M., Bos, E. et al. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5, 793–802 (2003). https://doi.org/10.1038/ncb1036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing