Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation

This article has been updated

Abstract

A growing literature points to a fundamental role for the ubiquitin–proteasome degradation system (UPS) in transcription. Four recent publications add significant insight to our understanding of the connections between these processes. Each provides evidence that some aspect of the UPS can stimulate the activity of transcriptional activators. UPS might promote transcription by several mechanisms, and in some cases, even the final step of the UPS — proteolysis — might enhance activator function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Class A, B and C transcription factors.
Figure 2: Different mechanisms by which proteasome-mediated degradation might stimulate transcription.

Similar content being viewed by others

Change history

  • 06 November 2003

    'California Institute of Biology' changed to 'California Institute of Technology' in second author affiliation PDF has been REPLACED no erratum will be published

Notes

  1. Institue of Biology has been amended to read Institute of Technology

References

  1. Muratani, M. & Tansey, W.P. How the ubiquitin-proteasome system controls transcription. Nature Rev. Mol. Cell Biol. 4, 192–201 (2003).

    Article  CAS  Google Scholar 

  2. Carr, A. Cell cycle: piecing together the p53 puzzle. Science 287, 1765 (2000).

    Article  CAS  Google Scholar 

  3. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).

    Article  CAS  Google Scholar 

  4. Deroo, B.J. et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol. Cell. Biol. 22, 4113–4123 (2002).

    Article  CAS  Google Scholar 

  5. Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl Acad. Sci. USA 98, 3056–3061 (2001).

    Article  CAS  Google Scholar 

  6. Molinari, E., Gilman, M. & Natesan, S. Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J. 18, 6439–6447 (1999).

    Article  CAS  Google Scholar 

  7. Salghetti, S.E., Muratani, M., Wijnen, H., Futcher, B. & Tansey, W.P. Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc. Natl Acad. Sci. USA 97, 3118–3123 (2000).

    Article  CAS  Google Scholar 

  8. Ansari, A.Z. et al. Transcriptional activating regions target a cyclin-dependent kinase. Proc. Natl Acad. Sci. USA 99, 14706–14709 (2002).

    Article  CAS  Google Scholar 

  9. Chi, Y. et al. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15, 1078–1092 (2001).

    Article  CAS  Google Scholar 

  10. Nelson, C., Goto, S., Lund, K., Hung, W. & Sadowski, I. Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature 421, 187–190 (2003).

    Article  CAS  Google Scholar 

  11. Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. & Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).

    Article  CAS  Google Scholar 

  12. Braun, B. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol. 1, 221–226 (1999).

    Article  CAS  Google Scholar 

  13. Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S.A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296, 548–550 (2002).

    Article  CAS  Google Scholar 

  14. Reid, G. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol. Cell 11, 695–707 (2003).

    Article  CAS  Google Scholar 

  15. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1177–1188 (2003).

    Article  Google Scholar 

  16. Kim, S., Herbst, A., Tworkowski, K., Salghetti, S. & Tansey, W. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  Google Scholar 

  17. Morris, M.C. et al. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature 423, 1009–1013 (2003).

    Article  CAS  Google Scholar 

  18. Lonard, D.M., Nawaz, Z., Smith, C.L. & O'Malley, B.W. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 5, 939–948 (2000).

    Article  CAS  Google Scholar 

  19. Lin, H.K. et al. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J. Biol. Chem. 277, 36570–36576 (2002).

    Article  CAS  Google Scholar 

  20. Stenoien, D.L. et al. FRAP reveals that mobility of oestrogen receptor-α is ligand- and proteasome-dependent. Nature Cell Biol. 3, 15–23 (2001).

    Article  CAS  Google Scholar 

  21. Johnson, E.S., Gonda, D.K. & Varshavsky, A. Cistrans recognition and subunit-specific degradation of short-lived proteins. Nature 346:287–291 (1990).

    Article  CAS  Google Scholar 

  22. Verma, R., McDonald, W., Yates, J. & Deshaies, R. Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol. Cell 8, 439–448 (2001).

    Article  CAS  Google Scholar 

  23. Nishiyama, A. et al. A nonproteolytic function of the proteasome is required for the dissociation of Cdc2 and cyclin B at the end of M phase. Genes Dev. 14, 2344–2357 (2000).

    Article  CAS  Google Scholar 

  24. Aparicio, O.M., Weinstein, D.M. & Bell, S.P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59–69 (1997).

    Article  CAS  Google Scholar 

  25. Kominami, K. et al. Nin1p, a regulatory subunit of the 26S proteasome, is necessary for activation of Cdc28p kinase of Saccharomyces cerevisiae. EMBO J. 14, 3105–3115 (1995).

    Article  CAS  Google Scholar 

  26. Tansey, W.P. Transcriptional activation: risky business. Genes Dev. 15, 1045–1050 (2001).

    Article  CAS  Google Scholar 

  27. Natarajan, K., Jackson, B.M., Zhou, H., Winston, F. & Hinnebusch, A.G. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol. Cell 4, 657–664 (1999).

    Article  CAS  Google Scholar 

  28. Freeman, B.C. & Yamamoto, K.R. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 2232–2235 (2002).

    Article  CAS  Google Scholar 

  29. Thomas, D. & Tyers, M. Transcriptional regulation: kamikaze activators. Curr. Biol. 10, R341–R343 (2000).

    Article  CAS  Google Scholar 

  30. Tworkowski, K.A., Salghetti, S.E. & Tansey, W.P. Stable and unstable pools of Myc protein exist in human cells. Oncogene 21, 8515–8520 (2002).

    Article  CAS  Google Scholar 

  31. Kuras, L. et al. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell 10, 69–80 (2002).

    Article  CAS  Google Scholar 

  32. Freiman, R.N. & Tijian, R. Regulating the regulators: lysine modifications make their mark. Cell 112, 11–17 (2003).

    Article  CAS  Google Scholar 

  33. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  34. Glickman, M. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  Google Scholar 

  35. Verma, R. et al. Deubiquitination and degradation of proteins by the 26S proteasome requires the Rpn11 metalloprotease motif. Science 298, 611–615 (2002).

    Article  CAS  Google Scholar 

  36. Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).

    Article  CAS  Google Scholar 

  37. Musti, A.M., Treier, M. & Bohmann, D. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275, 400–402 (1997).

    Article  CAS  Google Scholar 

  38. Kim, W. & Kaelin, W.J. The von Hippel–Lindau tumor suppressor protein: new insights into oxygen sensing and cancer. Curr. Opin. Genet. Dev. 13, 55–60 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Russell Lipford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipford, J., Deshaies, R. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 5, 845–850 (2003). https://doi.org/10.1038/ncb1003-845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1003-845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing