Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular chaperone targeting and regulation by BAG family proteins

Abstract

Regulated changes in protein conformation can have profound effects on protein function, although routine laboratory methods often fail to detect them. The recently discovered BAG-family proteins may operate as bridging molecules that recruit molecular chaperones to target proteins, presumably modulating protein functions through alterations in their conformations, and ultimately affecting diverse cellular behaviours including cell division, migration, differentiation and death. Emerging knowledge about BAG-family proteins indicates that there may be a mechanism for influencing signal transduction through non-covalent post-translational modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The BAG family.
Figure 2: Cellular roles of BAG-family proteins.
Figure 3: Comparison of BAG domains.

Similar content being viewed by others

References

  1. Takayama, S., Xie, Z. & Reed, J. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274, 781–786 (1999).

    Article  CAS  Google Scholar 

  2. Takayama, S., Bimston, D. N., Matsuzawa, S., Freeman, B. C., Aime-Sempe, C., Xie, Z. et al. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16, 4887–4896 (1997).

    Article  CAS  Google Scholar 

  3. Zeiner, M., Gebauer, M. & Gehring, U. Mammalian protein RAP46: an interaction partner and modulator of 70 kDa heat shock proteins. EMBO J. 16, 5483–5490 (1997).

    Article  CAS  Google Scholar 

  4. Luders, J., Demand, J. & Hohfeld, J. The ubiquitin-related bag-1 provides a link between the molecular chaperones hsc70/hsp70 and the proteasome. J. Biol. Chem. 275, 4613–4617 (2000).

    Article  CAS  Google Scholar 

  5. Takayama, S., Krajewski, S., Krajewski, M., Kitada, S., Zapata, J. M., Kochel, K. et al. Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res. 58, 3116–3131 (1998).

    CAS  PubMed  Google Scholar 

  6. Schneikert, J., Hubner, S., Martin, E. & Cato, A. C. A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity. J. Cell. Biol. 146, 929–940 (1999).

    Article  CAS  Google Scholar 

  7. Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  8. Frydman, J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Ann. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  9. Cheung, J. & Smith, D. F. Molecular chaperone interactions with steroid receptors: an update. Mol. Endocrinol. 14, 939–946 (2000).

    Article  CAS  Google Scholar 

  10. Beere, H. M. & Green, D. R. Stress management - heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 11, 6–10 (2001).

    Article  CAS  Google Scholar 

  11. Takayama, S., Sato, T., Krajewski, S., Kochecl, K., Irie, S., Millan, J. A. et al. Cloning and functional analysis of BAG-1: a novel Bcl-2 binding protein with anti-cell death activity. Cell 80, 279–284 (1995).

    Article  CAS  Google Scholar 

  12. Wang, H.-G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl. Acad. Sci. USA 93, 7063–7068 (1996).

    Article  CAS  Google Scholar 

  13. Song, J., Takeda, M. & Morimoto, R. I. Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-21/ERK and cell growth. Nature Cell Biol. 3, 276–282 (2001).

    Article  CAS  Google Scholar 

  14. Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M. & Reed, J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736–2747 (1998).

    Article  CAS  Google Scholar 

  15. Matsuzawa, S. & Reed, J. C. Siah-1, SIP, and Ebi collaborate in a novel pathway for ?-catenin degradation linked to p53 responses. Mol. Cell 7, 915–926 (2001).

    Article  CAS  Google Scholar 

  16. Clevenger, C. V., Thickman, K., Ngo, W., Chang, W.-P., Takayama, S. & Reed, J. C. Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 and Nb2. Mol. Endocrinol. 11, 608–618 (1997).

    Article  CAS  Google Scholar 

  17. Bardelli, A., Longati, P., Albero, D., Goruppi, S., Schneider, C., Ponzetto, C. et al. HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J. 15, 6205–6212 (1996).

    Article  CAS  Google Scholar 

  18. Packham, G., Brimmell, M. & Cleveland, J. L. Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem. J. 328, 807–813 (1997).

    Article  CAS  Google Scholar 

  19. Yang, X., Chernenko, G., Hao, Y., Ding, Z., Peter, M. M., Pater, A. et al. Human BAG-1 / RAP46 protein is generated as four isoforms by alternative translation initiation and overexpressed in cancer cells. Oncogene 17, 981–989 (1998).

    Article  CAS  Google Scholar 

  20. Zeiner, M., Niyaz, Y. & Gehring, U. The hsp70-associating protein Hap46 binds to DNA and stimulates transcription. Proc. Natl. Acad. Sci. USA 96, 10194–10199 (1999).

    Article  CAS  Google Scholar 

  21. Niyaz, Y., Zeiner, M. & Gehring, U. Transcriptional activation by the human Hsp70-associating protein Hap50. J. Cell Sci. 114, 1839–1845 (2001).

    CAS  PubMed  Google Scholar 

  22. Zeiner, M. & Gehring, U. A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning. Proc. Natl. Acad. Sci. USA 92, 11465–11469 (1995).

    Article  CAS  Google Scholar 

  23. Froesch, B. A., Takayama, S. & Reed, J. C. BAG-1L protein enhances androgen receptor function. J. Biol. Chem. 273, 11660–11666 (1998).

    Article  CAS  Google Scholar 

  24. Knee, D. A., Froesch, B. A., Nuber, U., Takayama, S. & Reed, J. C. Structure-function analysis of Bag1 proteins: effects on androgen receptor transcriptional activity. J. Biol. Chem. 276, 12718–12724 (2001).

    Article  CAS  Google Scholar 

  25. Guzey, M., Takayama, S. & Reed, J. C. BAG1L enhances trans-activation function of the vitamin D receptor. J. Biol. Chem. 275, 40749–40756 (2000).

    Article  CAS  Google Scholar 

  26. Kullmann, M., Schneikert, J., Moll, J., Heck, S., Zeiner, M., Gehring, U. et al. RAP46 is a negative regulator of glucocorticoid receptor action and hormone induced apoptosis. J. Biol. Chem. 273, 14620–14625 (1998).

    Article  CAS  Google Scholar 

  27. Liu, R., Takayama, S., Zheng, Y., Froesch, B., Chen, G. -Q., Zhang, X. et al. Interaction of BAG-1 with retinoic acid receptor and its inhibition of retinoic acid-induced apoptosis in cancer cells. J. Biol. Chem. 273, 16985–16992 (1998).

    Article  CAS  Google Scholar 

  28. Brimmell, M., Burns, J. S., Munson, P., McDonald, L., O'Hare, M. J., Lakhani, S. R. et al. High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers. Brit. J. Cancer 81, 1042–1051 (1999).

    Article  CAS  Google Scholar 

  29. Turner, B. C., Krajewski, S., Krajewski, M., Takayama, S., Gumbs, A. A., Rebbeck, T. R. et al. BAG-1: A novel biomarker predicting long term survival in early-stage breast cancer. J. Clin. Oncol. 19, 992–1000 (2001).

    Article  CAS  Google Scholar 

  30. Tang, S.-C., Shaheta, N., Chernenko, G., Khalifa, M. & Wang, X. Expression of BAG-1 in invasive breast carcinomas. J. Clin. Oncol. 17, 1710–1719 (1999).

    Article  CAS  Google Scholar 

  31. Yamauchi, H., Adachi, M., Sakata, K. -I., Hareyama, M., Satoh, M., Himi, T. et al. Nuclear BAG-1 localization and the risk of recurrence after radiation therapy in laryngeal carcinoma. Cancer Lett. 165, 103–110 (2001).

    Article  CAS  Google Scholar 

  32. Doong, H., Price, J., Kim, Y. S., Gasbarre, C., Probst, J., Liotta, L. A. et al. CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-? and hsp70/hsc70. Oncogene 19, 4385–4395 (2000).

    Article  CAS  Google Scholar 

  33. Lee, J. H., Takahashi, T., Yasuhara, N., Inazawa, J., Kamada, S. & Tsujimoto, Y. Bis, a bcl-2 binding protein that synergizes with bcl-2 in preventing cell death. Oncogene 18, 6183–6190 (1999).

    Article  CAS  Google Scholar 

  34. Jiang, Y., Woronicz, J. D., Liu, W. & Goeddel, D. V. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283, 543–546 (1999).

    Article  CAS  Google Scholar 

  35. Tschopp, J., Martinon, F. & Hofmann, K. Apoptosis: Silencing the death receptors. Curr. Biol. 9, R381–R384 (1999).

    Article  CAS  Google Scholar 

  36. Ozawa, F., Friess, H., Zimmermann, A., Kleeff, J. & Büchler, M. W. Enhanced expression of Silencer of Death Domains (SODD/BAG-4) in pancreatic cancer. Biochem. Biophys. Res. Commun. 271, 409–413 (2000).

    Article  CAS  Google Scholar 

  37. Thress, K., Henzel, W., Shillinglaw, W. & Kornbluth, S. Scythe: A novel reaper-binding apoptotic regulator. EMBO J. 17, 6135–6143 (1998).

    Article  CAS  Google Scholar 

  38. Thress, K., Song, J., Morimoto, R. I. & Kornbluth, S. Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper. EMBO J. 20, 1033–1041. (2001).

    Article  CAS  Google Scholar 

  39. Höhfeld, J. & Jentsch, S. GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16, 6209–6216 (1997).

    Article  Google Scholar 

  40. Bimston, D., Song, J., Winchester, D., Takayama, S., Reed, J. C. & Morimoto, R. I. Bag-1, a negative regulator of HSP70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J. 17, 6871–6878 (1998).

    Article  CAS  Google Scholar 

  41. Terada, K. & Mori, M. Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J. Biol. Chem. 275, 24728–24734 (2000).

    Article  CAS  Google Scholar 

  42. Gässler, C. S., Wiederkehr, T., Brehmer, D., Bukau, B. & Mayer, M. P. Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration dependent as positive and negative cofactor. J. Biol. Chem. (in the press).

  43. Stuart, J. K., Myszka, D. G., Joss, L., Mitchell, R. S., McDonald, S. M., Takayama, S. et al. Characterization of interactions between the anti-apoptotic protein BAG-1 and Hsc70 molecular chaperones. J. Biol. Chem. 273, 22506–22514 (1998).

    Article  CAS  Google Scholar 

  44. Brehmer, D., Rudiger, S., Gassler, C. S., Klostermeier, D., Packschies, L., Reinstein, J. et al. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nature Struct. Biol. 8, 427–432 (2001).

    Article  CAS  Google Scholar 

  45. Frydman, J. & Hohfeld, J. Chaperones get in touch: the hip-hop connection. Trends Biochem. Sci. 22, 87–92 (1997).

    Article  CAS  Google Scholar 

  46. McClellan, A. J. & Frydman, J. Molecular chaperones and the art of recognizing a lost cause. Nature Cell Biol. 3, E1–3 (2001).

    Article  Google Scholar 

  47. Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. -U. & Kuriyan, J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435 (1997).

    Article  CAS  Google Scholar 

  48. Sondermann, H., Scheufler, C., Schneider, C., Hohfeld, J., Hartl, F. U. & Moarefi, I. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291, 1553–1557 (2001).

    Article  CAS  Google Scholar 

  49. Briknarova, K., Takayama, S., Brive, L., Harvert, M. L., Knee, D. A., Velasco, J. et al. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nature Struct. Biol. 8, 349–352 (2001).

    Article  CAS  Google Scholar 

  50. Buchberger, A., Schroder, H., Buttner, M., Valencia, A. & Bukau, B. A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. Nature Struct. Biol. 1, 95–101 (1994).

    Article  CAS  Google Scholar 

  51. Misura, K. M., Scheller, R. H. & Weis, W. I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  Google Scholar 

  52. Fernandez, I., Ubach, J., Dulubova, I., Zhang, X., Sudhof, T. C. & Rizo, J. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).

    Article  CAS  Google Scholar 

  53. Sattler, M., Liang, H., Nettesheim, D., Meadows, R. P., Harlan, J. E., Eberstadt, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Cancer Institute and the Department of Defense for their generous support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayama, S., Reed, J. Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3, E237–E241 (2001). https://doi.org/10.1038/ncb1001-e237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-e237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing