Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Presenilins and the intramembrane proteolysis of proteins: facts and fiction

Missense mutations in the genes coding for presenilin 1 and presenilin 2 cause familial Alzheimer's disease — a progressive neurodegenerative disorder of the central nervous system. Loss-of-function mutations of these genes in Drosophila, Caenorhabditis elegans and mice cause severe lethal phenotypes, which implicates the presenilins genetically in the Notch signalling pathway. The hypothesis that presenilins are aspartyl proteases that cleave the amyloid precursor protein and Notch can explain the phenotypes. Direct evidence for this hypothesis is, however, difficult to obtain. Moreover, presenilin 1 is a multifunctional protein, as exemplified by its role in the Wnt/β-catenin signalling pathway.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PS regulated intramembrane proteolysis of Notch and APP.
Figure 2: Regulated intramembrane proteolysis and vesicular trafficking of SREBP/SCAP.
Figure 3: APP trafficking and proteolytic processing.

References

  1. Wurtman, R. J. Alzheimer's disease. Sci. Am. 252, 62–66 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Doan, A. et al. Protein topology of presenilin 1. Neuron 17, 1023–1030 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Li, X. & Greenwald, I. Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc. Natl Acad. Sci. USA 95, 7109–7114 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thinakaran, G. et al. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272, 28415–28422 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Thinakaran et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Capell, A. et al. The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem. 273, 3205–3211 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, T. W. et al. Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J. Biol. Chem. 272, 11006–11010 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, G. et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem. 273, 16470–16475 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, G. et al. Mutation of conserved aspartates affects maturation of both aspartate mutant and endogenous presenilin 1 and presenilin 2 complexes. J. Biol. Chem. 275, 27348–27353 (2000).

    CAS  PubMed  Google Scholar 

  13. Steiner, H. et al. Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J. Biol. Chem. 273, 32322–32331 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Yu, G. et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407, 48–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, J. et al. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport 8, 1489–1494 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Saura, C. A. et al. The nonconserved hydrophilic loop domain of presenilin (PS) is not required for PS endoproteolysis or enhanced Aβ42 production mediated by familial early onset Alzheimer's disease-linked PS variants. J. Biol. Chem. 275, 17136–17142 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Soriano, S. et al. Presenilin 1 negatively regulates β-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of β-amyloid precursor protein and Notch processing. J. Cell Biol. 152, 785–794 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Selkoe, D. J. Notch and presenilins in vertebrates and invertebrates: implications for neuronal development and degeneration. Curr. Opin. Neurobiol. 10, 50–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Wong, P. C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Shen, J. et al. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Xia, X. et al. Loss of presenilin 1 is associated with enhanced β-catenin signaling and skin tumorigenesis. Proc. Natl Acad. Sci. (in the press).

  22. De Strooper, B. & Annaert, W. Where Notch and Wnt signaling meet. The presenilin hub. J. Cell Biol. 152, F17–F20 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vito, P., Lacana, E. & D'Adamio, L. Interfering with apoptosis: Ca-binding protein Alg-2 and Alzheimer's disease gene Alg-3. Science 271, 521–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol. 1, 479–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Niwa, M., Sidrauski, C., Kaufman, R. J. & Walter, P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99, 691–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Leissring, M. A. et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoo, A. S. et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron 27, 561–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, H. et al. APP processing and synaptic plasticity in the adult cerebral cortex of presenilin-1 conditional knock out mice. Neuron (in the press).

  29. Sato, N. et al. Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nature Cell Biol. 2, 863–870 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Gu, Y. et al. Distinct intramembrane cleavage of the β-amyloid precursor protein family resembling γ-secretase-like cleavage of Notch. J. Biol. Chem. 10.1074/jbc.C100357200 (2001).

  31. Pinnix, I. et al. A novel γ-secretase assay based on detection of the putative C-terminal fragment-γ of amyloid β protein precursor. J. Biol. Chem. 276, 481–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-Amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. (in the press).

  33. Lichtenthaler, S. F. et al. Mechanism of the cleavage specificity of Alzheimer's disease γ-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc. Natl Acad. Sci. USA 96, 3053–3058 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Naruse, S. et al. Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Z. et al. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of Notch-1. Nature Cell Biol. 2, 463–465 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Herreman, A. et al. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol. 2, 461–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Armogida, M. et al. Endogeneous β-amyloid production in presenilin-deficient embryonic mice fibroblasts. Nature Cell Biol. (in the press).

  40. Annaert, W. G. et al. Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J. Cell Biol. 147, 277–294 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Y. M. et al. Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc. Natl Acad. Sci. USA 97, 6138–6143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seiffert, D. et al. Presenilin-1 and -2 are molecular targets for γ-secretase inhibitors. J. Biol. Chem. 275, 34086–34091 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Palacino, J. J. et al. Regulation of amyloid precursor protein processing by presenilin 1 (PS1) and PS2 in PS1 knockout cells. J. Biol. Chem. 275, 215–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Wolfe, M. S. et al. Peptidomimetic probes and molecular modeling suggest that Alzheimer's γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38, 4720–4727 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenelin endoproteolysis and γ-secretase activity. Nature 398, 513–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Steiner, H. et al. Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nature Cell Biol. 2, 848–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Esler, W. P. et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nature Cell Biol. 2, 428–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Li, Y. M. et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Annaert, W. & De Strooper, B. Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci. 22, 439–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Cupers, P., Orlans, I., Craessaerts, K., Annaert, W. & De Strooper, B. The amyloid precursor protein (APP)-cytoplasmic fragment generated by γ-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J. Neurochem. 78, 1168–1178

  53. Cao, X. & Sudhof, T. C. A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Capell, A. et al. Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch. Nature Cell Biol. 2, 205–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Morihara, T. et al. Absence of endoproteolysis but no effects on amyloid β production by alternative splicing forms of presenilin-1, which lack exon 8 and replace D257A. Brain Res. Mol. Brain Res. 85, 85–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Petit, A. et al. New protease inhibitors prevent γ-secretase-mediated production of Aβ40/42 without affecting Notch cleavage. Nature Cell Biol. 3, 507–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Citron, M. et al. Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron 17, 171–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Vassar, R. et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Huppert, S. S. et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 405, 966–970 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Murphy, M. P. et al. Presenilin 1 regulates pharmacologically distinct γ-secretase activities. Implications for the role of presenilin in γ-secretase cleavage. J. Biol. Chem. 275, 26277–26284 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Sakai, J. et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 2, 505–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Cupers, P. et al. The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein. J Cell Biol 154, 731–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ray, W. J. et al. Cell surface presenilin-1 participates in the γ-secretase-like proteolysis of notch. J. Biol. Chem. 274, 36801–36807 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Thinakaran, G. et al. Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Dis. 4, 438–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Lammich, S. et al. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl Acad. Sci. USA 96, 3922–3927 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buxbaum, J. D. et al. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27765–27767 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Struhl, G. & Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell 6, 625–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, T., Goldstein, J. L. & Brown, M. S. Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP.SREBP exit from endoplasmic reticulum. J. Biol. Chem. 275, 29881–29886 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Nohturfft, A., Yabe, D., Goldstein, J. L., Brown, M. S. & Espenshade, P. J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102, 315–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Duncan, E. A., Dave, U. P., Sakai, J., Goldstein, J. L. & Brown, M. S. Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning. J. Biol. Chem. 273, 17801–17809 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Xia, W. et al. Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid β-protein generation. Proc. Natl Acad. Sci. USA 97, 9299–9304 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weidemann, A. et al. Formation of stable complexes between two Alzheimer's disease gene products: presenilin-2 and β-amyloid precursor protein. Nature Med. 3, 328–332 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 5856–5861 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maltese, W. A. et al. Retention of the Alzheimer's amyloid precursor protein fragment C99 in the endoplasmic reticulum prevents formation of amyloid β-peptide. J. Biol. Chem. 276, 20267–20279 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Iwata, H., Tomita, T., Maruyama, K. & Iwatsubo, T. Subcellular compartment and molecular subdomain of β-amyloid precursor protein relevant to the Aβ42-promoting effects of Alzheimer mutant presenilin 2. J. Biol. Chem. 276, 21678–21685 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many researchers who provided information before publication and all members of our laboratory for their intellectual input. We acknowledge the financial support of the Bayer Research Network, the Flanders Interuniversity Institute for Biotechnology, The Human Frontier of Science Program, the National Fund for Scientific Research–Flanders and the Katholieke Universiteit Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Strooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strooper, B., Annaert, W. Presenilins and the intramembrane proteolysis of proteins: facts and fiction. Nat Cell Biol 3, E221–E225 (2001). https://doi.org/10.1038/ncb1001-e221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-e221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing