Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The function of PML in p53-dependent apoptosis

Abstract

The PML gene of acute promyelocytic leukaemia (APL) encodes a growth- and tumour-suppresor protein that is essential for several apoptotic signals. The mechanisms by which PML exerts its pro-apoptotic function are still unknown. Here we show that PML acts as a transcriptional co-activator with p53. PML physically interacts with p53 both in vitro and in vivo and co-localizes with p53 in the PML nuclear body (PML-NB). The co-activatory role of PML depends on its ability to localize in the PML-NB. p53-dependent, DNA-damage-induced apoptosis, transcriptional activation by p53, the DNA-binding ability of p53, and the induction of p53 target genes such as Bax and p21 upon γ-irradiation are all impaired in PML−/− primary cells. These results define a new PML-dependent, p53-regulatory pathway for apoptosis and shed new light on the function of PML in tumour suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA-damage-induced apoptosis is reduced in PML−/− thymocytes.
Figure 2: PML enhances p53 transcriptional activation.
Figure 3: Transcriptional activity of p53 is impaired in PML−/− cells.
Figure 4: PML interacts with p53 in vitro and in vivo.
Figure 5: p53, CBP and PML co-localize in the PML-NB.
Figure 6: Function of PML-NB localization in transcriptional co-activation by PML.
Figure 7: Impaired p53–DNA binding and induction of p53 target genes in PML−/− thymocytes.

Similar content being viewed by others

References

  1. Pandolfi, P. P. et al. Structure and origin of the acute promyelocytic leukemia myl/RARalpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6, 1285–1292 (1991).

    CAS  Google Scholar 

  2. de The, H. et al. The PML–RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  CAS  Google Scholar 

  3. Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARalpha with a novel putative transcription factor, PML. Cell 66, 663–674 (1991).

    Article  CAS  Google Scholar 

  4. Goddard, A. D., Borrow, P. S., Freemont, P. S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254, 1371–1374 (1991).

  5. Melnick, A. & Licht, J. D. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93, 3167–3215 (1999).

    CAS  PubMed  Google Scholar 

  6. He, L-Z., Merghoub, T. & Pandolfi, P. P. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 18, 5278–5292 (1999).

    CAS  PubMed  Google Scholar 

  7. Kastner, P. et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J. 11, 629–642 (1992).

    Article  CAS  Google Scholar 

  8. Perez, A. et al. PML/RAR homodimers: distinct DNA binding properties and heteromeric interactions with RAR. EMBO J. 12, 3171–3182 (1993).

    Article  CAS  Google Scholar 

  9. Borden, K. L. B. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14, 1532–1541 (1995).

    Article  CAS  Google Scholar 

  10. Zhong, S., Salomoni, P. & Pandolfi, P. P. The transcriptional role of PML and the nuclear body. Nature Cell Biol. 2, E85–E90 (2000).

    Article  CAS  Google Scholar 

  11. Zhong, S. et al. Role of Sumo-1-modified PML in nuclear body formation. Blood 95, 2748–2753 (2000).

    CAS  PubMed  Google Scholar 

  12. Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998).

    Article  CAS  Google Scholar 

  13. Wang, Z. G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet. 20, 266–271 (1998).

    Article  CAS  Google Scholar 

  14. Ahn, J. H., Brignole, E. & Hayward, G. S. Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML. Mol. Cell Biol. 18, 4899–4913 (1998).

    Article  CAS  Google Scholar 

  15. Zhong, S. et al. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nature Genet. 23, 287–295 (1999).

    Article  CAS  Google Scholar 

  16. Doucas, V., Tini, M., Egan, D. A. & Evans, R. M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl Acad. Sci. USA 96, 2627–2632 (1999).

    Article  CAS  Google Scholar 

  17. Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824–828 (1999).

    Article  CAS  Google Scholar 

  18. Näär, A. M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).

    Article  Google Scholar 

  19. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996).

    Article  CAS  Google Scholar 

  20. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  21. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  22. Hollstein, M. et al. Database of somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  24. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  Google Scholar 

  25. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and -independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  Google Scholar 

  26. Chao, D. T. & Korsmeyer, S. J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 16, 395–419 (1998).

    Article  CAS  Google Scholar 

  27. Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P. S. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Hum. Genet. 63, 297–304 (1998).

    Article  CAS  Google Scholar 

  28. Masuda, H., MIller, C., Koeffler, H. P., Battifora, H. & Cline, M. J. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. Natl Acad. Sci. USA 84, 7716–7719 (1987).

    Article  CAS  Google Scholar 

  29. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–25 (1993).

    Article  CAS  Google Scholar 

  30. Miyashita, T. R. J. C. Tumor suppressor p53 is a direct transcriptional activator of the human Bax gene. Cell 80, 293–299 (1995).

    Article  CAS  Google Scholar 

  31. Hollander, M. C. et al. Analysis of the mammalian gadd45 gene and its response to DNA damage. J. Biol. Chem. 268, 24385–24393 (1993).

    CAS  PubMed  Google Scholar 

  32. Gu, W., Shi, X. L. & Roeder R. G. Synergistic activation of transcription by CBP and p53. Nature 387, 819–823 (1997).

    Article  CAS  Google Scholar 

  33. LaMorte, V. J., Dyck, J. A., Ochs, R. L. & Evans, R. M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc. Natl Acad. Sci. USA 95, 4991–4996 (1998).

    Article  CAS  Google Scholar 

  34. Gu, W. & Roeder, R. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  Google Scholar 

  35. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrarys. Genes Dev. 14, 981–993 (2000).

    Article  CAS  Google Scholar 

  36. Yu, J. et al. Identification and classification of p53-regulated genes. Proc. Natl Acad. Sci. USA. 96, 14517–14522 (1999).

    Article  CAS  Google Scholar 

  37. Bouvard, V. et al. Tissue and cell-specific expression of the p53-target genes: Bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 19, 649–660 (2000).

    Article  CAS  Google Scholar 

  38. Zhong, S. et al. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J. Exp. Med. 191, 631–639 (2000).

    Article  CAS  Google Scholar 

  39. Strasser, A., Harris, A. W., Jacks, T. & Cory, S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79, 329–339 (1994).

    Article  CAS  Google Scholar 

  40. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

    Article  CAS  Google Scholar 

  41. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell Biol. 19, 1202–1209 (1999).

    Article  CAS  Google Scholar 

  42. MacLachlan, T. K. et al. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem. 275, 2777–2785 (2000).

    Article  CAS  Google Scholar 

  43. Reap, E. A. et al. Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proc. Natl Acad. Sci. USA 94, 5750–5755 (1997).

    Article  CAS  Google Scholar 

  44. Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene 18, 7941–7947 (1999).

    Article  CAS  Google Scholar 

  45. Grignani, F. et al. The acute promyelocytic leukemia specific PML/RARα fusion protein inhibits differentiation and promotes suvival of myeloid precursor cells. Cell 74, 423–431 (1993).

    Article  CAS  Google Scholar 

  46. Longo, L. et al. Frequency of RAS and p53 mutations in acute promyelocytic leukemias. Leuk. Lymphoma 11, 405–410 (1993).

    Article  CAS  Google Scholar 

  47. Gaiddon, C., Moorthy, N. C. & Prives, C. Ref-1 regulates the transactivation and the pro-apoptotic function of p53 in vivo. EMBO J. 18, 5609–5621 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Prives, K. Scotto, R. Johnson, P. Freemont, K. Elkon, L. Longo, K. Manova, Z. G. Wang, V. Richon and J. Hung for materials, advice and help in some experiments. We are grateful to A. Levine for useful discussions. P.S. is a recipient of a doctorate fellowship from the University of Modena, Italy. P.P.P. is a Scholar of the Leukemia and Lymphoma Society of America (previously know as the Leukemia Society of America). This work was supported by the Sloan-Kettering Institute (CA-08748) and NIH (CA 71692 awarded to P.P.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Additional information

Correspondence and requests for materials should be addressed to P. P. P.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, A., Salomoni, P., Luo, J. et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2, 730–736 (2000). https://doi.org/10.1038/35036365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing