Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear localization of EGF receptor and its potential new role as a transcription factor

Abstract

Epidermal growth factor receptor (EGFR) has been detected in the nucleus in many tissues and cell lines. However, the potential functions of nuclear EGFR have largely been overlooked. Here we demonstrate that nuclear EGFR is strongly correlated with highly proliferating activities of tissues. When EGFR was fused to the GAL4 DNA-binding domain, we found that the carboxy terminus of EGFR contained a strong transactivation domain. Moreover, the receptor complex bound and activated AT-rich consensus-sequence-dependent transcription, including the consensus site in cyclin D1 promoter. By using chromatin immunoprecipitation assays, we further demonstrated that nuclear EGFR associated with promoter region of cyclin D1 in vivo. EGFR might therefore function as a transcription factor to activate genes required for highly proliferating activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemical staining of different tissues for EGFR.
Figure 2: Detection of EGFR in the nuclear fractions of A431 and MDA-MB-468 cells.
Figure 3: Time-course study of EGFR nuclear localization.
Figure 4: Activation of gene expression by the C-terminus of EGFR (PRR domain).
Figure 5: AT-rich consensus sequences (ATRSs) identified by CASTing.
Figure 6: Activation of ATRS-specific reporter gene expression by EGF in EGFR-overexpressing cell lines.
Figure 7: ATRS-dependent activation of cyclin D1 promoter by EGF, and association of EGFR with cyclin D1 promoter in vivo.

Similar content being viewed by others

References

  1. Cohen, S., Ushiro, H., Stoscheck, C. & Chinkers, M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J. Biol. Chem. 257, 1523–1531 (1982).

    CAS  PubMed  Google Scholar 

  2. Boonstra, J. et al. The epidermal growth factor. Cell. Biol. Int. 19, 413–30 (1995).

    Article  CAS  Google Scholar 

  3. Anderson, D. et al. Binding of SH2 domains of phospholipase C γ1, GAP, and Src to activated growth factor receptors. Science 250, 979–982 (1990).

    Article  CAS  Google Scholar 

  4. Hu, P. et al. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol. Cell. Biol. 12, 981–990 (1992).

    Article  CAS  Google Scholar 

  5. Carpenter, G. & Cohen, S. Epidermal growth factor. Annu. Rev. Biochem. 48, 193–216 (1979).

    Article  CAS  Google Scholar 

  6. Knauer, D. J., Wiley, H. S. & Cunningham, D. D. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J. Biol. Chem. 259, 5623–5631 (1984).

    CAS  PubMed  Google Scholar 

  7. Defize, L. H., Moolenaar, W. H., van der Saag, P. T. & de Laat, S. W. Dissociation of cellular responses to epidermal growth factor using anti-receptor monoclonal antibodies. EMBO J. 5, 1187–1192 (1986).

    Article  CAS  Google Scholar 

  8. Wakshull, E. M. & Wharton, W. Stabilized complexes of epidermal growth factor and its receptor on the cell surface stimulate RNA synthesis but not mitogenesis. Proc. Natl Acad. Sci. USA 82, 8513–8517 (1985).

    Article  CAS  Google Scholar 

  9. Zimmermann, H. et al. The overexpression of proliferating cell nuclear antigen in biliary cirrhosis in the rat and its relationship with epidermal growth factor receptor. J. Hepatol. 23, 459–464 (1995).

    Article  CAS  Google Scholar 

  10. Tervahauta, A., Syrjanen, S. & Syrjanen, K. Epidermal growth factor receptor, c-erbB-2 proto-oncogene and estrogen receptor expression in human papillomavirus lesions of the uterine cervix. Int. J. Gynecol. Pathol. 13, 234–240 (1994).

    Article  CAS  Google Scholar 

  11. Kamio, T., Shigematsu, K., Sou, H., Kawai, K. & Tsuchiyama, H. Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum. Pathol. 21, 277–282 (1990).

    Article  CAS  Google Scholar 

  12. Gusterson, B. et al. Evidence for increased epidermal growth factor receptors in human sarcomas. Int. J. Cancer 36, 689–693 (1985).

    Article  CAS  Google Scholar 

  13. Lipponen, P. & Eskelinen, M. Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br. J. Cancer 69, 1120–1125 (1994).

    Article  CAS  Google Scholar 

  14. Pilch, P. F. & Czech, M. P. Interaction of cross-linking agents with the insulin effector system of isolated fat cells. Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons. J. Biol. Chem. 254, 3375–3381 (1979).

    CAS  PubMed  Google Scholar 

  15. Rakowicz-Szulczynska, E. M., Rodeck, U., Herlyn, M. & Koprowski, H. Chromatin binding of epidermal growth factor, nerve growth factor, and platelet-derived growth factor in cells bearing the appropriate surface receptors. Proc. Natl Acad. Sci. USA 83, 3728–3732 (1986).

    Article  CAS  Google Scholar 

  16. Khazaie, K., Schirrmacher, V. & Lichtner, R. B. EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev. 12, 255–274 (1993).

    Article  CAS  Google Scholar 

  17. Wright, W. E., Binder, M. & Funk, W. Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol. Cell. Biol. 11, 4104–4110 (1991).

    Article  CAS  Google Scholar 

  18. Kimura, H. Schwannoma-derived growth factor must be transported into the nucleus to exert its mitogenic activity. Proc. Natl Acad. Sci. USA 90, 2165–2169 (1993).

    Article  CAS  Google Scholar 

  19. Jans, D. A. & Hassan, G. Nuclear targeting by growth factors, cytokines, and their receptors: a role in signaling? BioEssays 20, 400–411 (1998).

    Article  CAS  Google Scholar 

  20. Vigneri, R., Goldfine, I. D., Wong, K. Y., Smith, G. J. & Pezzino, V. The nuclear envelope. The major site of insulin binding in rat liver nuclei. J. Biol. Chem. 253, 2098–2103 (1978).

    CAS  PubMed  Google Scholar 

  21. Rakowicz-Szulczynska, E. M., Herlyn, M. & Koprowski, H. Nerve growth factor receptors in chromatin of melanoma cells, proliferating melanocytes, and colorectal carcinoma cells in vitro. Cancer Res. 48, 7200–7206 (1988).

    CAS  PubMed  Google Scholar 

  22. Maher, P. A. Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J. Cell Biol. 134, 529–536 (1996).

    Article  CAS  Google Scholar 

  23. Stachowiak, M. K., Maher, P. A., Joy, A., Mordechai, E. & Stachowiak, E. K. Nuclear accumulation of fibroblast growth factor receptors is regulated by multiple signals in adrenal medullary cells. Mol. Biol. Cell 7, 1299–1317 (1996).

    Article  CAS  Google Scholar 

  24. Lobie, P. E., Wood, T. J., Chen, C. M., Waters, M. J. & Norstedt, G. Nuclear translocation and anchorage of the growth hormone receptor. J. Biol. Chem. 269, 31735–31746 (1994).

    CAS  PubMed  Google Scholar 

  25. Curtis, B. M., Widmer, M. B., deRoos, P. & Qwarnstrom, E. E. IL-1 and its receptor are translocated to the nucleus. J. Immunol. 144, 1295–1303 (1990).

    CAS  PubMed  Google Scholar 

  26. Srinivasan, R., Gillett, C. E., Barnes, D. M. & Gullick, W. J. Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Res. 60, 1483–1487 (2000).

    CAS  PubMed  Google Scholar 

  27. Xie, Y. & Hung, M. C. Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem. Biophys. Res. Commun. 203, 1589–1598 (1994).

    Article  CAS  Google Scholar 

  28. Cohen, J. A., Yachnis, A. T., Arai, M., Davis, J. G. & Scherer, S. S. Expression of the neu proto-oncogene by Schwann cells during peripheral nerve development and Wallerian degeneration. J. Neurosci. Res. 31, 622–634 (1992).

    Article  CAS  Google Scholar 

  29. Hsu, S. M., Raine, L. & Fanger, H. Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29, 577–580 (1981).

    Article  CAS  Google Scholar 

  30. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    Article  CAS  Google Scholar 

  31. Orlando, V. & Paro, R. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75, 1187–1198 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank You-Wei Chen for his assistance with the confocal microscopic analysis. The work was supported partly by NCI grants (to L.B. and M.-C.H.), an M.D. Anderson Faculty Achievement Award (to M.-C.H.) and a predoctoral fellowship from the DOD Breast Cancer Research Program (to S.-Y. L.). K.M. and Y.W. are supported by a DOD Breast Cancer Research Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mien-Chie Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SY., Makino, K., Xia, W. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3, 802–808 (2001). https://doi.org/10.1038/ncb0901-802

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing