Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity

Abstract

Cellular asymmetry is critical for the development of multicellular organisms. Here we show that homologues of proteins necessary for asymmetric cell division in Caenorhabditis elegans associate with each other in mammalian cells and tissues. mPAR-3 and mPAR-6 exhibit similar expression patterns and subcellular distributions in the CNS and associate through their PDZ (PSD-95/Dlg/ZO-1) domains. mPAR-6 binds to Cdc42/Rac1 GTPases, and mPAR-3 and mPAR-6 bind independently to atypical protein kinase C (aPKC) isoforms. In vitro, mPAR-3 acts as a substrate and an inhibitor of aPKC. We conclude that mPAR-3 and mPAR-6 have a scaffolding function, coordinating the activities of several signalling proteins that are implicated in mammalian cell polarity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein-domain organization of mPAR-3 and mPAR-6.
Figure 2: Expression and subcellular distribution of mPAR-3 and mPAR-6.
Figure 3: Immunocytochemical localization of mPAR-3 and mPAR-6 in the adult mouse brain.
Figure 4: mPAR-3 interacts with mPAR-6.
Figure 5: Co-distribution of exogenous mPAR-3 100K and Flag–mPAR-6.
Figure 6: mPAR-6 binds to Cdc42 and Rac1 through its CRIB motif.
Figure 7: mPAR-3 PDZ1, mPAR-6 and Cdc42(V12) can form a ternary complex.
Figure 8: mPAR-3 and mPAR-6 both bind directly to aPKC and affect its activity.

Similar content being viewed by others

References

  1. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).

    Article  CAS  Google Scholar 

  2. Cereijido, M., Valdes, J., Shoshani, L. & Contreras, R. G. Role of tight junctions in establishing and maintaining cell polarity. Annu. Rev. Physiol. 60, 161–177 (1998).

    Article  CAS  Google Scholar 

  3. Guo, S. & Kemphues, K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 ( 1996).

    Article  CAS  Google Scholar 

  4. Lin, H. & Schagat, T. Neuroblasts: a model for the asymmetric division of stem cells. Trends Genet. 13, 33–39 (1997).

    Article  CAS  Google Scholar 

  5. Knoblich, J. A. Mechanisms of asymmetric cell division during animal development. Curr. Opin. Cell Biol. 9, 833–841 (1997).

    Article  CAS  Google Scholar 

  6. Muller, H. A. & Wieschaus, E. armadillo, bazooka and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149– 163 (1996).

    Google Scholar 

  7. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    Article  CAS  Google Scholar 

  8. Etemad-Moghadam, B., Guo, S., & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 ( 1995).

    Article  CAS  Google Scholar 

  9. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that co-localizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    CAS  PubMed  Google Scholar 

  10. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 ( 1998).

    CAS  PubMed  Google Scholar 

  11. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81 , 611–620 (1995).

    Google Scholar 

  12. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122, 3075–3084 (1996).

    CAS  PubMed  Google Scholar 

  13. Cheng, N. N., Kirby, C. M. & Kemphues, K. J. Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics 139, 549–559 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122, 3133– 3140 (1996).

    CAS  PubMed  Google Scholar 

  15. Hartenstein, V. & Campos-Ortega, J. A. Early neurogenesis in wild-type Drosophila melanogaster. Roux’s Arch. Dev. Biol. 193, 308–325 ( 1984).

    Article  Google Scholar 

  16. Doe, C. Q. Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116, 855–863 (1992).

    CAS  PubMed  Google Scholar 

  17. Bossing, T., Udolph, G., Doe, C. Q. & Technau, G. M. The embryonic central nervous system lineages of Drosophila melanogaster: I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol. 179, 41–64 (1996).

    Article  CAS  Google Scholar 

  18. Kraut, R. & Campos-Ortega, J. A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeletal adaptor protein. Dev. Biol. 174, 65– 81 (1996).

    Google Scholar 

  19. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50 –55 (1996).

    Article  CAS  Google Scholar 

  20. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).

    Article  CAS  Google Scholar 

  21. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 ( 1999).

    Article  CAS  Google Scholar 

  22. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    Article  CAS  Google Scholar 

  23. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in Inscuteable apical localization. Cell 100, 399–409 (2000).

    Article  CAS  Google Scholar 

  24. Lin, D., Gish, G. D., Songyang, Z. & Pawson, T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274, 3726–3733 (1999).

    Article  CAS  Google Scholar 

  25. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  Google Scholar 

  26. Sudhof, T. C., Lottspeich, F., Greengard, P., Mehl, E. & Jahn, R. A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science 238, 1142–4 (1987).

    Article  CAS  Google Scholar 

  27. Johnston, P. A., Jahn, R. & Sudhof, T. C. Transmembrane topography and evolutionary conservation of synaptophysin. J. Biol. Chem. 264, 1268 –73 (1989).

    CAS  PubMed  Google Scholar 

  28. Garcia, E. P., McPherson, P. S., Chilcote, T. J., Takei, K. & DeCamilli, P. rbSec1 A and B colocalize with syntaxin one and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J. Cell Biol. 129, 105– 120 (1995).

    Article  CAS  Google Scholar 

  29. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 ( 1995).

    Article  CAS  Google Scholar 

  30. Hillier, B. J., Christopherson, K. S., Prehoda, K. E., Bredt, D. S. & Lim, W. A. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS–Syntrophin complex. Science 284, 812–815 ( 1999).

    Article  CAS  Google Scholar 

  31. Colman, D. R. Neuronal polarity and the epithelial metaphor. Neuron 23, 649–651 (1999).

    Article  CAS  Google Scholar 

  32. Bredt, D. S. Sorting out genes that regulate epithelial and neuronal polarity. Cell 94, 691–694 ( 1998).

    Article  CAS  Google Scholar 

  33. Dotti, C. G. & Simons, K. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 62, 63–72 ( 1990).

    Article  CAS  Google Scholar 

  34. Huttner, W. B. & Brand, M. Asymmetric division and polarity of neuroepithelial cells. Curr. Opin. Neurobiol. 7, 29–39 (1997).

    Article  CAS  Google Scholar 

  35. Van Aelst, L. & D’Souza-Schorey, C. Rho GTPases and signalling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  Google Scholar 

  36. Mackay, D. J. G. & Hall, A. Rho GTPases. J. Biol. Chem. 273, 20685–20688 (1998).

    Article  CAS  Google Scholar 

  37. Hird, S. N. & White, J. G. Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans. J. Cell Biol. 121, 1343–1355 ( 1993).

    Article  CAS  Google Scholar 

  38. Hill, D. P. & Strome, S. An analysis of the role of microfilaments in the establishment and maintenance of asymmetry in Caenorhabditis elegans zygotes. Dev. Biol. 125, 75– 84 (1988).

    Article  CAS  Google Scholar 

  39. Jou, T. S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).

    Article  CAS  Google Scholar 

  40. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  41. Nakanishi, H., Brewer, K. A. & Exton, J. H. Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem. 268, 13–16 ( 1993).

    CAS  PubMed  Google Scholar 

  42. Standaert, M. L. et al. Protein kinase C as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J. Biol. Chem. 272, 30075– 30082 (1997).

    Article  CAS  Google Scholar 

  43. Self, A. J. & Hall, A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 256, 3–10 (1995).

    Article  CAS  Google Scholar 

  44. Hart, M. J. et al. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem. 269, 62–65 (1994).

    CAS  PubMed  Google Scholar 

  45. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374– 1388 (1983).

    Article  CAS  Google Scholar 

  46. Hell, J. W. & Jahn, R. in Cell Biology: a Laboratory Manual (ed. Celis, J. E.) 567–574 (Academic, San Diego, 1997).

  47. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

Download references

Acknowledgements

We thank M. Moran and E. Manser for Cdc42 and Rac1 reagents, and R. Steven and T. Kubiseski for technical advice and critical reading of the manuscript. We are indebted to I. Macara and G. S. Martin for sharing unpublished results. D.L. was supported by a graduate studentship from the Medical Research Council (MRC) of Canada. J.F. is an MRC Postdoctoral Fellow. J.D.S. acknowledges support by NIH grant DK44239. This work was supported by the MRC of Canada and by a Howard Hughes Medical Institute Research Scholar Award to T.P. T.P. is a Distinguished Scientist of the MRC of Canada.

Correspondence and requests for materials should be addressed to T.P.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Edwards, A., Fawcett, J. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2, 540–547 (2000). https://doi.org/10.1038/35019582

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing