Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P

Abstract

The sorting nexin (SNX) protein family is implicated in regulating membrane traffic, but the mechanism is still unknown. We show that SNX3 is associated with the early endosome through a novel motif (PX domain) capable of interaction with phosphatidylinositol-3-phosphate (PtdIns(3)P). Overexpression of SNX3 alters endosomal morphology and delays transport to the lysosome. Transport from the early to the recycling endosome is affected upon microinjection of SNX3 antibodies. Our results highlight a novel mechanism by which SNX proteins regulate traffic and uncover a novel class of effectors for PtdIns(3)P.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SNX3 is enriched in the early endosome.
Figure 2: SNX3 localizes together with internalized anti-TfR antibody on its way to the recycling endosome.
Figure 3: Preferential association of SNX3 with tubular–vesicular structures and tubular extensions of the early endosome.
Figure 4: Wortmannin-sensitive endosomal association of SNX3.
Figure 5: PX-domain-dependent direct interaction of SNX3 with PtdIns(3)P.
Figure 6: Overexpression of SNX3 results in alterations of endosomal morphology.
Figure 7: SNX3 overexpression causes the formation of expanded tubular–vesicular structures.
Figure 8: SNX3 regulates endosomal traffic.
Figure 9: SNX3 mutants defective in interaction with PtdIns(3)P fail to associate with the endosome and to affect the endosomal pathway.

Similar content being viewed by others

References

  1. Corvera, S., D'Arrigo, A. & Stenmark, H. Phosphoinositides in membrane traffic. Curr. Opin. Cell Biol. 11, 460–465 (1999).

    Article  CAS  Google Scholar 

  2. Di Fiore, P. P. & Gill, G. N. Endocytosis and mitogenic signaling. Curr. Opin. Cell Biol. 11, 483–488 (1999).

    Article  CAS  Google Scholar 

  3. Gruenberg, J. & Maxfield, F. R. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563 (1995).

    Article  CAS  Google Scholar 

  4. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell. Dev. Biol. 12, 575–625 (1996).

    Article  CAS  Google Scholar 

  5. Wurmser, A. E., Gary, J. D. & Emr, S. D. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J. Biol. Chem. 274, 9129–9132 (1999).

    Article  CAS  Google Scholar 

  6. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  7. Mayor, S., Presley, J. F. & Maxfield, F. R. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121, 1257–1269 (1993).

    Article  CAS  Google Scholar 

  8. Schmid, S. L., Fuchs, R., Male, P. & Mellman, I. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell 52, 73–83 (1988).

    Article  CAS  Google Scholar 

  9. Daro, E. P., van der Sluijs, P., Galli, T. & Mellman, I. Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc. Natl Acad. Sci. USA 93, 9559–9564 (1996).

    Article  CAS  Google Scholar 

  10. Gagescu, R. et al. The recycling endosome of Madin–Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11, 2775–2791 (2000).

    Article  CAS  Google Scholar 

  11. Hopkins, C. R. & Trowbridge, I. S. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J. Cell Biol. 97, 508–521 (1983).

    Article  CAS  Google Scholar 

  12. Yamashiro, D. J. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).

    Article  CAS  Google Scholar 

  13. Mallet, W. G. & Maxfield, F. R. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J. Cell Biol. 146, 345–359 (1999).

    Article  CAS  Google Scholar 

  14. Falnes, P. & Sandvig, K. Penetration of protein toxins into cells. Curr. Opin. Cell Biol. 12, 407–413 (2000).

    Article  CAS  Google Scholar 

  15. Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990 (1998).

    Article  CAS  Google Scholar 

  16. Diaz, E. & Pfeffer, S. R. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433–443 (1998).

    Article  CAS  Google Scholar 

  17. Orsel, J. G., Sincock, P. M., Krise, J. P. & Pfeffer, S. R. Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc. Natl Acad. Sci. USA 97, 9047–9051 (2000).

    Article  CAS  Google Scholar 

  18. Ponting, C. P. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci. 5, 2353–2357 (1996).

    Article  CAS  Google Scholar 

  19. Kurten, R. C., Cadena, D. L. & Gill, G. N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272, 1008–1010 (1996).

    Article  CAS  Google Scholar 

  20. Haft, C. R., de la Luz Sierra, M., Barr, V. A., Haft, D. H. & Taylor, S. I. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell. Biol. 18, 7278–7287 (1998).

    Article  CAS  Google Scholar 

  21. Ekena, K. & Stevens, T. H. The Saccharomyces cerevisiae MVP1 gene interacts with VPS1 and is required for vacuolar protein sorting. Mol. Cell. Biol. 15, 1671–1678 (1995).

    Article  CAS  Google Scholar 

  22. Horazdovsky, B. F. et al. A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol. Biol. Cell 8, 1529–1541 (1997).

    Article  CAS  Google Scholar 

  23. Nothwehr, S. F. & Hindes, A. E. The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J. Cell Sci. 110, 1063–1072 (1997).

    CAS  PubMed  Google Scholar 

  24. Voos, W. & Stevens, T. H. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J. Cell Biol. 140, 577–590 (1998).

    Article  CAS  Google Scholar 

  25. Sato, T. K., Darsow, T. & Emr, S. D. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog function together in yeast vacuolar protein trafficking. Mol. Cell. Biol. 18, 5308–5319 (1998).

    Article  CAS  Google Scholar 

  26. Mu, F. T. et al. EEA1, an early endosome-associated protein. J. Biol. Chem. 270, 13503–13511 (1995).

    Article  CAS  Google Scholar 

  27. Honing, S., Sosa, M., Hille-Rehfeld, A. & von Figura, K. The 46-kDa mannose 6-phosphate receptor contains multiple binding sites for clathrin adaptors. J. Biol. Chem. 272, 19884–19890 (1997).

    Article  CAS  Google Scholar 

  28. Xu, Y., Wong, S. H., Zhang, T., Subramaniam, V. N. & Hong, W. GS15, a 15-kilodalton Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) homologous to rbet1. J. Biol. Chem. 272, 20162–20166 (1997).

    Article  CAS  Google Scholar 

  29. Salzman, N. H. & Maxfield, F. R. Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact cells. J. Cell Biol. 109, 2097–2104 (1989).

    Article  CAS  Google Scholar 

  30. Molz, L., Chen, Y. W., Hirano, M. & Williams, L. T. Cpk is a novel class of Drosophila PtdIns 3-kinase containing a C2 domain. J. Biol. Chem. 271, 13892–13899 (1996).

    Article  CAS  Google Scholar 

  31. Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267–272 (1997).

    Article  CAS  Google Scholar 

  32. Volinia, S. et al. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p–Vps15p protein sorting system. EMBO J. 14, 3339–3348 (1995).

    Article  CAS  Google Scholar 

  33. Patki, V. et al. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 94, 7326–7330 (1997).

    Article  CAS  Google Scholar 

  34. Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  CAS  Google Scholar 

  35. Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 (1998).

    Article  CAS  Google Scholar 

  36. Simonsen, A. et al. EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  Google Scholar 

  37. Rameh L. E. & Cantley, L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350 (1999).

    Article  CAS  Google Scholar 

  38. Wong, S. H. et al. GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6. Mol. Biol. Cell. 10, 119–134 (1999).

    Article  CAS  Google Scholar 

  39. Yoshimori, T. et al. The mouse SKD1, a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cells. Mol. Biol. Cell 11, 747–763 (2000).

    Article  CAS  Google Scholar 

  40. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  Google Scholar 

  41. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).

    Article  CAS  Google Scholar 

  42. Liu, D., Yang, X. & Songyang, Z. Identification of CISK, a new member of the SGK kinase family that promotes IL-3-dependent survival. Curr. Biol. 10, 1233–1236 (2000).

    Article  CAS  Google Scholar 

  43. Lock, P., Abram, C. L., Gibson, T. & Courtneidge, S. A. A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate. EMBO J. 17, 4346–4357 (1998).

    Article  CAS  Google Scholar 

  44. Misra, S. & Hurley, J. H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666 (1999).

    Article  CAS  Google Scholar 

  45. Steyer, J. A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474–478 (1997).

    Article  CAS  Google Scholar 

  46. Tse, F. W., Tse, A., Hille, B., Horstmann, H. & Almers, W. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron 18, 121–132 (1997).

    Article  CAS  Google Scholar 

  47. Umeda, M., Igarashi, K., Nam, K. S. & Inoue, K. Effective production of monoclonal antibodies against phosphatidylserine: stereo-specific recognition of phosphatidylserine by monoclonal antibody. J. Immunol. 143, 2273–2279 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. von Figura for antibodies against the Mr 46K M6PR, B. L. Tang and P. Singh for critical reading of the manuscript, D. E. James for insightful discussions, and Y. H. Tan for his continuous support. This work was funded by the Institute of Molecular and Cell Biology (to W.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjin Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Hortsman, H., Seet, L. et al. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol 3, 658–666 (2001). https://doi.org/10.1038/35083051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing