Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling

Abstract

Loss of expression of neural cell-adhesion molecule (N-CAM) is implicated in the progression of tumour metastasis. Here we show that N-CAM modulates neurite outgrowth and matrix adhesion of β-cells from pancreatic tumours by assembling a fibroblast-growth-factor receptor-4 (FGFR-4) signalling complex, which consists of N-cadherin, FGFR-4, phospholipase Cγ (PLC-γ), the adaptor protein FRS2, pp60c-src, cortactin and growth-associated protein-43 (GAP-43). Dominant-negative FGFR-4, inhibitors of FGFR signalling and anti-β1-integrin antibodies repress matrix adhesion induced by N-CAM. FGF ligands can replace N-CAM in promoting matrix adhesion but not neurite outgrowth. The results indicate that N-CAM stimulates β1-integrin-mediated cell–matrix adhesion by activating FGFR signalling. This is a potential mechanism for preventing the dissemination of metastatic tumour cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dramatic tissue disaggregation (A) and impairment of cell–matrix adhesion in N-CAM-deficient tumour β-cells (B).
Figure 2: N-CAM-dependent neurite outgrowth in tumour β-cells.
Figure 3: N-CAM modulates neurite outgrowth and cell–matrix adhesion.
Figure 4: N-CAM associates with FGFR-4, PLC-γ, FRS2, pp60c-src and cortactin.
Figure 5: N-CAM associates with FGFR-4 in L cells.
Figure 6: Inhibition of N-CAM-dependent neurite outgrowth and matrix adhesion.
Figure 7: N-CAM-dependent assembly of signalling complexes.
Figure 8: Modulation of cell–matrix adhesion and of p42/44 MAPK activation by FGFs.

Similar content being viewed by others

References

  1. Roth, J. et al. Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumour. Proc. Natl Acad. Sci. USA 85, 2999–3003 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson, J. P. Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease. Cancer Metastasis Rev. 10, 11–22 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Moolenaar, C. E. et al. Expression of neural cell adhesion molecule-related sialoglycoprotein in small cell lung cancer and neuroblastoma cell lines H69 and CHP-212. Cancer Res. 50, 1102–1106 (1990).

    CAS  PubMed  Google Scholar 

  4. Kaiser, U., Auerbach, B. & Oldenburg, M. The neural cell adhesion molecule N-CAM in multiple myeloma. Leuk. Lymphoma 20, 389–395 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Fogar, P. et al. Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anticancer Res. 17, 1227–1230 (1997).

    CAS  PubMed  Google Scholar 

  6. Perl, A. K. et al. Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic β-tumor cells. Nature Med. 5, 286–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Rutishauser, U. Adhesion molecules of the nervous system. Curr. Opin. Neurobiol. 3, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Cunningham, B. A. Cell adhesion molecules as morphoregulators. Curr. Opin. Cell Biol. 7, 628–633 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Walsh, F. S. & Doherty, P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu. Rev. Cell Dev. Biol. 13, 425–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Crossin, K. L. & Krushel, L. A. Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev. Dyn. 218, 260–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Rutishauser, U. & Landmesser, L. Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell-cell interactions. Trends Neurosci. 19, 422–427 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Horstkorte, R., Schachner, M., Magyar, J. P., Vorherr, T. & Schmitz, B. The fourth immunoglobulin-like domain of N-CAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J. Cell Biol. 121, 1409–1421 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Cole, G. J. & Akeson, R. Identification of a heparin binding domain of the neural cell adhesion molecule N-CAM using synthetic peptides. Neuron 2, 1157–1165 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Probstmeier, R., Kuhn, K. & Schachner, M. Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J. Neurochem. 53, 1794–1801 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Dickson, G. et al. Human muscle neural cell adhesion molecule (N-CAM): identification of a muscle-specific sequence in the extracellular domain. Cell 50, 1119–1130 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Gower, H. J. et al. Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55, 955–964 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Langley, O. K., Aletsee-Ufrecht, M. C., Grant, N. J. & Gratzl, M. Expression of the neural cell adhesion molecule N-CAM in endocrine cells. J. Histochem. Cytochem. 37, 781–791 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Cirulli, V. et al. Expression of neural cell adhesion molecule (N-CAM) in rat islets and its role in islet cell type segregation. J. Cell Sci. 107, 1429–1436 (1994).

    CAS  PubMed  Google Scholar 

  21. Tomasiewicz, H. et al. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11, 1163–1174 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Ono, K., Tomasiewicz, H., Magnuson, T. & Rutishauser, U. N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595–609 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Stork, O. et al. Anxiety and increased 5-HT1A receptor response in N-CAM null mutant mice. J. Neurobiol. 40, 343–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Esni, F. et al. Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J. Cell Biol. 144, 325–337 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rabinowitz, J. E., Rutishauser, U. & Magnuson, T. Targeted mutation of N-CAM to produce a secreted molecule results in a dominant embryonic lethality. Proc. Natl Acad. Sci. USA 93, 6421–6424 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Williams, E. J., Furness, J., Walsh, F. S. & Doherty, P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–594 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Doherty, P. & Walsh, F. S. Signal transduction events underlying neurite outgrowth stimulated by cell adhesion molecules. Curr Opin Neurobiol. 4, 49–55 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Doherty, P. & Walsh, F. S. CAM-FGF receptor interactions: a model for axonal growth. Mol. Cell Neurosci. 8, 99–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Saffell, J. L., Williams, E. J., Mason, I. J., Walsh, F. S. & Doherty, P. Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18, 231–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Hall, H. et al. Inhibition of FGF-stimulated phosphatidylinositol hydrolysis and neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr. Biol. 6, 580–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Corbit, K. C., Foster, D. A. & Rosner, M. R. Protein kinase Cδ mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol. Cell Biol. 19, 4209–4218 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmid, R. S. et al. N-CAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J. Neurobiol. 38, 542–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kolkova, K., Novitskaya, V., Pedersen, N., Berezin, V. & Bock, E. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the ras-mitogen-activated protein kinase pathway. J. Neurosci. 20, 2238–2246 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beggs, H. E., Baragona, S. C., Hemperly, J. J. & Maness, P. F. N-CAM140 interacts with the focal adhesion kinase p125 (FAK) and the SRC-related tyrosine kinase p59(fyn). J. Biol. Chem. 272, 8310–8319 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Williams, E. J., Furness, J., Walsh, F. S. & Doherty, P. Characterisation of the second messenger pathway underlying neurite outgrowth stimulated by FGF. Development 120, 1685–1693 (1994).

    CAS  PubMed  Google Scholar 

  37. Ronn, L. C. et al. Identification of a neuritogenic ligand of the neural cell adhesion molecule using a combinatorial library of synthetic peptides. Nature Biotechnol. 17, 1000–1005 (1999).

    Article  CAS  Google Scholar 

  38. Meiri, K. F., Saffell, J. L., Walsh, F. S. & Doherty, P. Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. J. Neurosci. 18, 10429–10437 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Varnum-Finney, B. & Reichardt, L. Vinculin-deficient PC12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth. J. Cell Biol. 127, 1071–1084 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Olson, D. C., Deng, C. & Hanahan, D. Fibroblast growth factor receptor 4, implicated in progression of islet cell carcinogenesis by its expression profile, does not contribute functionally. Cell Growth Differ. 9, 557–564 (1998).

    CAS  PubMed  Google Scholar 

  41. Zhan, X., Plourde, C., Hu, X., Friesel, R. & Maciag, T. Association of fibroblast growth factor receptor-1 with c-Src correlates with association between c-Src and cortactin. J. Biol. Chem. 269, 20221–20224 (1994).

    CAS  PubMed  Google Scholar 

  42. Vainikka, S., Joukov, V., Klint, P. & Alitalo, K. Association of a 85-kDa serine kinase with activated fibroblast growth factor receptor-4. J. Biol. Chem. 271, 1270–1273 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Moller, C. J. et al. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas. Mol. Endocrinol. 6, 1332–1342 (1992).

    CAS  PubMed  Google Scholar 

  44. Ignelzi, M. A. Jr, Miller, D. R., Soriano, P. & Maness, P. F. Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron 12, 873–884 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Beggs, H. E., Soriano, P. & Maness, P. F. N-CAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J. Cell Biol. 127, 825–833 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Kinnunen, T. et al. Cortactin-Src kinase signaling pathway is involved in N-syndecan- dependent neurite outgrowth. J. Biol. Chem. 273, 10702–10708 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Efrat, S. et al. β-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc. Natl Acad. Sci. USA 85, 9037–9041 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matzner, Y., Vlodavsky, I., Michaeli, R. I. & Eldor, A. Selective inhibition of neutrophil activation by the subendothelial extracellular matrix: possible role in protection of the vessel wall during diapedesis. Exp. Cell Res. 189, 233–240 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Cavallaro, U. et al. FGF-2 stimulates migration of Kaposi's sarcoma-like vascular cells by HGF-dependent relocalization of the urokinase receptor. FASEB J. 12, 1027–1034 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Wilgenbus for technical support, K. Paiha and P. Steinlein for confocal microscopy, K. Alitalo, A. Ullrich, H. Semb, A. Vecchi and Yoshimoto Pharmaceuticals for cells and reagents, and E. Wagner, B. Dickson and M. Cotten for critical comments on the manuscript. This work was supported by Boehringer Ingelheim, by the Austrian Industrial Research Promotion Fund, and the Austrian Science Foundation. U.C. is enrolled in the Doctoral Programme in Experimental Pathology of the University of Florence. J.N. was in part supported by a postdoctoral fellowship from the Deutsche Akademische Austauschdienst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Christofori.

Supplementary information

Download plugins

Figure S1 Cell–cell adhesion is not significantly impaired in N-CAM-deficient tumour β-cells. (PDF 283 kb)

Figure S2 N-CAM-associated tyrosine phophorylation.

Figure S3 Significance of the N-CAM/FGFR-4/N-cadherin signalling complex.

Figure S4 Activation of p42/44 MAPK.

Figure S5 A model of N-CAM-mediated signal transduction in tumour β-cells.

Cell–cell adhesion is not significantly impaired in N-CAM-deficient tumour β-cells.

Figure S2 N-CAM-associated tyrosine phophorylation.

Figure S3 Significance of the N-CAM/FGFR-4/N-cadherin signalling complex.

Figure S4 Activation of p42/44 MAPK.

Figure S5 A model of N-CAM-mediated signal transduction in tumour β-cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallaro, U., Niedermeyer, J., Fuxa, M. et al. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3, 650–657 (2001). https://doi.org/10.1038/35083041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing