Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour

Abstract

The XMAP215/ch-TOG/Msps family of microtubule-associated proteins (MAPs) promote microtubule growth in vitro and are concentrated at centrosomes in vivo. We show here that Msps (mini-spindles protein) interacts with the centrosomal protein D-TACC, and that this interaction strongly influences microtubule behaviour in Drosophila embryos. If D-TACC levels are reduced, Msps does not concentrate at the centrosomes efficiently and the centrosomal microtubules appear to be destabilized. If D-TACC levels are increased, both D-TACC and Msps accumulate around the centrosomes/spindle poles, and the centrosomal microtubules appear to be stabilized. We show that the interaction between D-TACC and Msps is evolutionarily conserved. We propose that D-TACC and Msps normally cooperate to stabilize centrosomal microtubules by binding to their minus ends and binding to their plus ends as they grow out from the centrosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction between D-TACC and Msps.
Figure 2: Localization of D-TACC and Msps in embryos containing different amounts of D-TACC.
Figure 3: The human TACC proteins can bind to ch-TOG.
Figure 4: The GST–TD fusion protein seems to stabilize microtubules in Drosophila embryos in an Msps-dependent manner.
Figure 5: The behaviour of D-TACC–GFP or Msps–GFP in living embryos.
Figure 6: A model of how D-TACC and Msps might cooperate to stabilize centrosomal microtubules.

Similar content being viewed by others

References

  1. Glover, D. M., Gonzalez, C. & Raff, J. W. The centrosome. Sci. Am. 268, 62–68 (1993).

    Article  CAS  Google Scholar 

  2. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  Google Scholar 

  3. Kellogg, D. R., Moritz, M. & Alberts, B. M. The centrosome and cellular organization. Annu. Rev. Biochem. 63, 639–674 (1994).

    Article  CAS  Google Scholar 

  4. Felix, M. A., Antony, C., Wright, M. & Maro, B. Centrosome assembly in vitro: role of γ-tubulin recruitment in Xenopus sperm aster formation. J. Cell Biol. 124, 19–31 (1994).

    Article  CAS  Google Scholar 

  5. Joshi, H. C., Palacios, M. J., McNamara, L. & Cleveland, D. W. γ-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 356, 80–83 (1992).

    Article  CAS  Google Scholar 

  6. Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, M. K. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289–1301 (1990).

    Article  CAS  Google Scholar 

  7. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76, 623–637 (1994).

    Article  CAS  Google Scholar 

  8. Sunkel, C. E., Gomes, R., Sampaio, P., Perdigao, J. & Gonzalez, C. γ-tubulin is required for the structure and function of the microtubule organizing center in Drosophila neuroblasts. EMBO J. 14, 28–36 (1995).

    Article  CAS  Google Scholar 

  9. Zheng, Y. X., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    Article  CAS  Google Scholar 

  10. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638–640 (1995).

    Article  CAS  Google Scholar 

  11. Erickson, H. P. γ-tubulin nucleation: template or protofilament? Nature Cell Biol. 2, E93–E96 (2000).

    Article  CAS  Google Scholar 

  12. Gunawardane, R. N., Lizarraga, S. B., Wiese, C., Wilde, A. & Zheng, Y. γ-tubulin complexes and their role in microtubule nucleation Curr. Top. Dev. Biol. 49, 55–73 (2000).

    Article  CAS  Google Scholar 

  13. Compton, D. A. Focusing on spindle poles. J. Cell Sci. 111, 1477–1481 (1998).

    CAS  PubMed  Google Scholar 

  14. Hyman, A. A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401–410 (1996).

    Article  CAS  Google Scholar 

  15. Merdes, A. & Cleveland, D. W. Pathways of spindle pole formation: different mechanisms; conserved components. J. Cell Biol. 138, 953–956 (1997).

    Article  CAS  Google Scholar 

  16. Cullen, C. F., Deak, P., Glover, D. M. & Ohkura, H. Mini spindles. A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005–1018 (1999).

    Article  CAS  Google Scholar 

  17. do Carmo Avides, M. & Glover, D. M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283, 1733–1735 (1999).

    Article  CAS  Google Scholar 

  18. Kellogg, D. R., Field, C. M. & Alberts, B. M. Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. J. Cell Biol. 109, 2977–2991 (1989).

    Article  CAS  Google Scholar 

  19. Kellogg, D. R., Oegema, K., Raff, J., Schneider, K. & Alberts, B. M. CP60 a microtubule associated protein that is localized to the centrosome in a cell cycle specific manner. Mol. Biol. Cell 6, 1673–1684 (1995).

    Article  CAS  Google Scholar 

  20. Oegema, K., Marshall, W. F., Sedat, J. W. & Alberts, B. M. Two proteins that cycle asynchronously between centrosomes and nuclear structures: Drosophila CP60 and CP190. J. Cell Sci. 110, 1573–1583 (1997).

    CAS  PubMed  Google Scholar 

  21. Kidd, D. & Raff, J. W. LK6, a short lived protein kinase in Drosophila that can associate with microtubules and centrosomes. J. Cell Sci. 110, 209–219 (1997).

    CAS  PubMed  Google Scholar 

  22. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203–2215 (1987).

    Article  CAS  Google Scholar 

  23. Vasquez, R. J., Gard, D. L. & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 (1994).

    Article  CAS  Google Scholar 

  24. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000).

    Article  CAS  Google Scholar 

  25. Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748–20753 (2000).

    Article  CAS  Google Scholar 

  26. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111, 1371–1383 (1998).

    CAS  Google Scholar 

  27. Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159–1168 (1998).

    Article  CAS  Google Scholar 

  28. Nabeshima, K. et al. p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9, 1572–1585 (1995).

    Article  CAS  Google Scholar 

  29. Wang, P. J. & Huffaker, T. C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).

    Article  CAS  Google Scholar 

  30. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G. & Raff, J. W. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J. 19, 241–252 (2000).

    Article  CAS  Google Scholar 

  31. Chen, H. M. et al. AZU-1: A candidate breast tumor suppressor and biomarker for tumor progression. Mol. Biol. Cell 11, 1357–1367 (2000).

    Article  CAS  Google Scholar 

  32. Still, I. H., Hamilton, M., Vince, P., Wolfman, A. & Cowell, J. K. Cloning of TACC1, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon. Oncogene 18, 4032–4038 (1999).

    Article  CAS  Google Scholar 

  33. Still, I. H., Vince, P. & Cowell, J. K. The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics 58, 165–170 (1999).

    Article  CAS  Google Scholar 

  34. Gergely, F. et al. The TACC domain identifies a new family of proteins that can interact with centrosomes and microtubules. Proc. Natl Acad. Sci. USA 97, 14352–12357 (2000).

    Article  CAS  Google Scholar 

  35. Cullen, C. F. & Ohkura, H. Msps is localized to acentrosomal poles by Ncd and D-TACC to ensure the bipolarity of Drosophila meiotic spindles. Nature Cell Biol. 3, 637–642.

  36. Laemmli, U. K. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  37. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  38. Raff, J. W., Kellogg, D. R. & Alberts, B. M. Drosophila γ-tubulin is part of a complex containing two previously identified centrosomal MAPs. J. Cell Biol. 121, 823–835 (1993).

    Article  CAS  Google Scholar 

  39. Heuer, J. G., Li, K. & Kaufman, T. C. The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development 121, 3861–3876 (1995).

    CAS  PubMed  Google Scholar 

  40. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).

    Article  CAS  Google Scholar 

  41. Rorth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998).

    Article  CAS  Google Scholar 

  42. Towbin, H., Staehlin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc. Natl Acad. Sci. USA 80, 4350–4354 (1979).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Ohkura and F. Cullen for sharing results before publication and for supplying anti-Msps anti-serum and the mspsMJ15 allele. We thank B. Williams and M. Goldberg who provided us with their unpublished d-taccstella alleles. We also thank T. Hyman and D. Compton for providing us with anti-ch-TOG antibodies, and J. Kilmartin for advice about sample preparation for mass spectroscopy. We thank members of the laboratory for comments on the manuscript. This work was supported by a Wellcome Trust Senior Fellowship in Basic Biomedical Sciences (to J.W.R.), an MRC studentship (to M.J.L.), a Wellcome Trust Prize Studentship (to F.G.) and the Medical Research Council (S.Y.P.-C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan W. Raff.

Supplementary information

Movie 1

The behaviour of a D-TACC–GFP fusion protein in a living embryo. Note how small dots of the fusion protein can be observed oscillating to and fro from the centrosomal region, as though binding to the plus ends of the centrosomal microtubules. (MOV 7992 kb)

Movie 2

The behaviour of a Msps–GFP fusion protein in a living embryo. Note how small dots of the fusion protein can be observed oscillating to and fro from the centrosomal region, as though binding to the plus ends of the centrosomal microtubules. (MOV 3252 kb)

Figure S1

The behaviour of D–TACC (top left panel), Msps (bottom left panel), microtubules (middle panel) and DNA (right panel) in embryos treated with taxol before fixation. (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Gergely, F., Jeffers, K. et al. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol 3, 643–649 (2001). https://doi.org/10.1038/35083033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing