Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles

Abstract

The female meiotic spindle is commonly formed in a centrosome-independent manner. Here we report the identification of proteins at acentrosomal poles in the female meiotic spindle of Drosophila. The acentrosomal poles contain at least two proteins, Mini-spindles (Msps) and D-TACC, which are also associated with mitotic centrosomes. These proteins interact with one another and are both required for maintaining the bipolarity of acentrosomal spindles. The polar localization of Msps is dependent on D-TACC and Ncd, a kinesin-like microtubule motor. We propose that the polar localization of Msps mediated by D-TACC and Ncd may be crucial for the stabilization of meiotic spindle bipolarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular defects in a female sterile allele, mspsMJ208.
Figure 2: Tripolar meiotic spindles in non-activated oocytes from the mspsMJ208 mutant.
Figure 3: Msps and D-TACC localize to the poles of an acentrosomal meiosis I spindle in wild-type oocytes.
Figure 4: D-TACC is required for Msps polar localization and spindle bipolarity.
Figure 5: The Ncd motor is required for the efficient polar localization of Msps.
Figure 6: A proposed model of Msps localization and function in acentrosomal spindles.

Similar content being viewed by others

References

  1. McKim, K. S. & Hawley, R. S. Chromosomal control of meiotic cell division. Science 270, 1595–1601 (1995).

    Article  CAS  Google Scholar 

  2. Waters, J. C. & Salmon, E. D. Pathways of spindle assembly. Curr. Opin. Cell Biol. 9, 37–43 (1997).

    Article  CAS  Google Scholar 

  3. Glover, D. M., Gonzalez, C. & Raff, J. W. The centrosome. Scient. Am. 268, 62–68 (1993).

    Article  CAS  Google Scholar 

  4. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  Google Scholar 

  5. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  6. Sawin, K. E. & Mitchison, T. J. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112, 925–40 (1991).

    Article  CAS  Google Scholar 

  7. Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol. 134, 455–464 (1996).

    Article  CAS  Google Scholar 

  8. Mahowald, A. P. & Kambysellis, M. P. Oogenesis. in The Genetics and Biology of Drosophila. Vol 2d. (eds Ashburner, M. & Wright, T. R. F.) 141–224 (Academic Press, New York, 1980).

    Google Scholar 

  9. Endow, S. A., Henikoff, S. & Soler-Niedziela, L. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345, 81–83 (1990).

    Article  CAS  Google Scholar 

  10. McDonald, H. B. & Goldstein, L. S. B. Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61, 991–1000 (1990).

    Article  CAS  Google Scholar 

  11. McDonald, H. B., Stewart, R. J. & Goldstein, L. S. B. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159–1165 (1990).

    Article  CAS  Google Scholar 

  12. Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).

    Article  CAS  Google Scholar 

  13. Hatsumi, M. & Endow, S. A. The Drosophila ncd microtubule motor protein is spindle-associated in meiotic and mitotic cells. J. Cell Sci. 103, 1013–1020 (1992).

    CAS  PubMed  Google Scholar 

  14. Hatsumi, M. & Endow, S. A. Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci. 101, 547–559 (1992).

    PubMed  Google Scholar 

  15. Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. Structural and functional domains of the Drosophila ncd microtubule motor protein. J. Biol. Chem. 268, 9005–9013 (1993).

    CAS  PubMed  Google Scholar 

  16. Theurkauf, W. E. & Hawley, R. S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180 (1992).

    Article  CAS  Google Scholar 

  17. Tavosanis, G., Llamazares, S., Goulielmos, G. & Gonzalez, C. Essential role for γ-tubulin in the acentriolar female meiotic spindle of Drosophila. EMBO J. 16, 1809–1819 (1997).

    Article  CAS  Google Scholar 

  18. Wilson, P. G. & Borisy, G. G. Maternally expressed γTub37CD in Drosophila is differentially required for female meiosis and embryonic mitosis. Dev. Biol. 199, 273–290 (1998).

    Article  CAS  Google Scholar 

  19. Cullen, C. F., Deák, P., Glover, D. M. & Ohkura, H. mini spindles: a gene encoding a conserved microtubule associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005–1018 (1999).

    Article  CAS  Google Scholar 

  20. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G. & Raff, J. D-TACC: a novel centrosomal protein required for normal spindle function in early Drosophila embryo. EMBO J. 19, 241–252 (2000).

    Article  CAS  Google Scholar 

  21. Whitfield, W. G., Millar, S. E., Saumweber, H., Frasch, M. & Glover, D. M. Cloning of a gene encoding an antigen associated with the centrosome in Drosophila. J. Cell Sci. 89, 467–480 (1988).

    CAS  PubMed  Google Scholar 

  22. Komma, D. J., Horne, A. S. & Endow, S. A. Separation of meiotic and mitotic effects of claret non-disjunctional on chromosome segregation in Drosophila. EMBO J. 10, 419–424 (1991).

    Article  CAS  Google Scholar 

  23. Moore, J. D., Song, H. & Endow, S. A. A point mutation in the microtubule binding region of the Ncd motor protein reduces motor velocity. EMBO J. 15, 3306–3314 (1996).

    Article  CAS  Google Scholar 

  24. Nabeshima, K., Kurooka, H., Takeuchi, M., Kinoshita, K., Nakaseko, Y. & Yanagida, M. p93Dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9, 1572–1585 (1995).

    Article  CAS  Google Scholar 

  25. Wang, P. J. & Huffaker T. C. Stu2p: A microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).

    Article  CAS  Google Scholar 

  26. Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159–1168 (1998).

    Article  CAS  Google Scholar 

  27. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111, 1371–1383 (1998).

    CAS  PubMed  Google Scholar 

  28. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000).

    Article  CAS  Google Scholar 

  29. Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748–20753 (2000).

    Article  CAS  Google Scholar 

  30. Lee, M. J., Gergely, F., Jeffers, K., Peak-Chew, S. Y. & Raff, J. W. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nature Cell Biol. 3, 643–649 (2001).

    Article  CAS  Google Scholar 

  31. Vasquez, R. J., Gard, D. L., & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 (1994).

    Article  CAS  Google Scholar 

  32. Ashburner, M. Drosophila (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  33. Lindsley, D. L. & Zimm, G. G. The genome of Drosophila melanogaster (Academic Press, New York, 1992).

    Google Scholar 

  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: a laboratory manual (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  35. Harlow, E. & Lane, D. Antibodies: a laboratory manual (Cold Spring Harbor Laboratory, New York, 1988).

    Google Scholar 

  36. Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500 (1989).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Davis, K. Sawin, J. Raff and N. Preston for critical reading of the manuscript, and K. Gull and D. Glover for antibodies. We thank members of the Ohkura laboratory for support and encouragement, and J. Raff and members of his laboratory for sharing materials and unpublished results. This work was supported by the Wellcome Trust and H.O. received a Wellcome Senior Fellowship for Basic Biomedical Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohkura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, C., Ohkura, H. Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol 3, 637–642 (2001). https://doi.org/10.1038/35083025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing