Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms.

Abstract

Intracellular parasites of the phylum Apicomplexa contain specialized rhoptry secretory organelles that have a crucial function in host-cell invasion and establishment of the parasitophorous vacuole. Here we show that localization of the Toxoplasma gondii rhoptry protein ROP2 is dependent on a YEQL sequence in the cytoplasmic tail that binds to µ-chain subunits of T. gondii and mammalian adaptors, and conforms to the YXXφ mammalian sorting motif. Chimaeric reporters, containing the transmembrane domains and cytoplasmic tails of the low-density lipoprotein receptor and of Lamp-1, are sorted to the Golgi or the trans-Golgi network (TGN), and partially to apical microneme organelles of the parasite, respectively. Targeting of these reporters is mediated by YXXφ- and NPXY-type signals. This is the first demonstration of tyrosine-dependent sorting in protozoan parasites, indicating that T. gondii proteins may be targeted to, and involved in biogenesis of, morphologically unique organelles through the use of evolutionarily conserved signals and machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constructs used in this study.
Figure 2: The cytoplasmic YEQL motif is necessary for targeting of ROP2 to rhoptry organelles.
Figure 3: The SEYEQL sequence of ROP2 interacts with clathrin adaptor µ-chains in a yeast two-hybrid growth assay.
Figure 4: The GYQTI motif directs sorting of the B–Lamp chimaera in T. gondii.
Figure 5: B–Lamp partially co-localizes with micronemes in T. gondii.
Figure 6: Immunoelectron-microscopic localization of BAP chimaeras in T.gondii .
Figure 7: Tyrosine-dependent localization of B–LDLR constructs in T. gondii.
Figure 8: Characterization of HA-tagged ROP2(ΔYEQL).
Figure 9: Tyrosine-dependent protein sorting in T. gondii.

Similar content being viewed by others

References

  1. Joiner, K. A., Fuhrman, S. A., Mietinnen, H., Kasper, L. L. & Mellman, I. Toxoplasma gondii: fusion competence of parasitiphorous vacuoles in Fc receptor transfected fibroblasts. Science 249, 641–646 ( 1990).

    Google Scholar 

  2. Wong, S-Y. & Remington, J. S. Biology of Toxoplasma gondii. AIDS 7, 299–316 ( 1993).

    PubMed  Google Scholar 

  3. Dubey, J. P. & Beattie, C. P. Toxoplasmosis of Animals and Man. (CRC, Boca Raton, 1988).

  4. Soldati, D. Molecular genetic strategies in Toxoplasma gondii: close in on a successful invader. FEBS Lett. 389, 80–83 ( 1996).

    Article  CAS  Google Scholar 

  5. Carruthers, V. B. & Sibley, D. L. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 73, 114–123 (1997).

    CAS  PubMed  Google Scholar 

  6. Sam-Yellowe, T. Y. Rhoptry organelles of the Apicomplexa: their role in host cell invasion and intracellular survival. Parasitol. Today 12, 308–316 (1996).

    Article  CAS  Google Scholar 

  7. Ngô, H. M., Hoppe, H. C. & Joiner, K. A. Differential sorting and post-secretory targeting of proteins in parasitic invasion. Trends Cell Biol. 10, 67– 72 (2000).

    Article  Google Scholar 

  8. Marks, M. S., Ohno, H., Kirchhausen, T. & Bonifacino, J. S. Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores . Trends Cell Biol. 7, 124– 128 (1997).

    Article  CAS  Google Scholar 

  9. Hirst, J. & Robinson, M. S. Clathrin and adaptors. Biochem. Biophys. Acta 1404, 173–193 (1998).

    Article  CAS  Google Scholar 

  10. Bonifacino, J. S. & Dell’Angelica, E. C. Molecular bases for the recognition of tyrosine-based sorting signals. J. Cell Biol. 145, 923– 926 (1999).

    Article  CAS  Google Scholar 

  11. Chen, W., Goldstein, J. L. & Brown, M. S. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265, 3116– 3123 (1990).

    CAS  PubMed  Google Scholar 

  12. Kibbey, R. G., Rizo, J., Gierasch, L. M. & Anderson, R. G. W. The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. J. Cell Biol. 142, 59–67 (1998).

    Article  CAS  Google Scholar 

  13. Nothwehr, S. F. & Stevens, T. H. Sorting of membrane proteins in the yeast secretory pathway. J. Biol. Chem. 269 , 10185–10188 (1994).

    CAS  PubMed  Google Scholar 

  14. Beckers, C. J. M., Wakefield, T. & Joiner, K. A. The expression of Toxoplasma proteins in Neospora caninum and the identification of a gene encoding a novel rhoptry protein. Mol. Biochem. Parasitol. 89, 209–223 (1997).

    Article  CAS  Google Scholar 

  15. Owen, D. J. & Evans, P. R. A structural explanation for the recognition of tyrosine-based endocytic signals. Science 282, 1327–1332 (1998).

    Article  CAS  Google Scholar 

  16. Ohno, H., Fournier, M., Poy, G. & Bonifacino, J. S. Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains. J. Biol. Chem. 271, 29009 –29015 (1996).

    Article  CAS  Google Scholar 

  17. Karsten, V. et al. The protozoan parasite Toxoplasma gondii targets proteins to dense granules and the vacuolar space using both conserved and unusual mechanisms. J. Cell Biol. 141, 1323– 1333 (1998).

    Article  CAS  Google Scholar 

  18. Harter, C. & Mellman, I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J. Cell Biol. 117, 311– 325 (1992).

    Article  CAS  Google Scholar 

  19. Höning, S. & Hunziker, W. Cytoplasmic determinants involved in direct lysosomal sorting, endocytosis, and basolateral targeting of rat lgp120 (lamp-1) in MDCK cells. J. Cell Biol. 128, 321– 332 (1995).

    Article  Google Scholar 

  20. Wimer-Mackin, S. & Granger, B. L. Transmembrane domain mutations influence the cellular distribution of lysosomal membrane glycoprotein A. Biochem. Biophys. Res. Comm. 229, 472–478 (1996).

    Article  CAS  Google Scholar 

  21. Reaves, B. J., Banting, G. & Luzio, J. P. Lumenal and transmembrane domains play a role in sorting type I membrane proteins on endocytic pathways. Mol. Biol. Cell 9, 1107–1122 ( 1998).

    Article  CAS  Google Scholar 

  22. Munro, S. An investigation of the role of transmembrane domains in Golgi protein retention . EMBO J. 14, 4695–4704 (1995).

    Article  CAS  Google Scholar 

  23. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S. & Klausner, R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56, 801–813 (1989).

    Article  CAS  Google Scholar 

  24. Lippincott-Schwartz, J. et al. Brefeldin A’s effect on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67, 601–616 (1991).

    Article  CAS  Google Scholar 

  25. Reaves, B. & Banting, G. Perturbation of the morphology of the trans-Golgi network following brefeldin-A treatment — redistribution of a TGN-specific integral membrane protein, TGN38. J. Cell Biol. 116, 85–94 ( 1992).

    Article  CAS  Google Scholar 

  26. Hager, K. M., Striepen, B., Tilney, L. G. & Roos, D. S. The nuclear envelope serves as an intermediary between the ER and golgi complex in the intracellular parasite Toxoplasma gondii. J. Cell Sci. 112, 2631–2638 ( 1999).

    CAS  PubMed  Google Scholar 

  27. Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determinants . Cell 71, 741–753 (1992).

    Article  CAS  Google Scholar 

  28. Fölsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 15, 189–198 (1999).

    Google Scholar 

  29. Soldati, D., Lassen, A., Dubremetz, J-F. & Boothroyd, J. C. Processing of Toxoplasma ROP1 protein in nascent rhoptries. Mol. Biochem. Parasitol. 96, 37–48 (1998).

    Article  CAS  Google Scholar 

  30. Beckers, C. J. M., Dubremetz, J., Mercereau-Puijalon, O. & Joiner, K. A. The Toxoplasma gondii rhoptry protein ROP2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm. J. Cell Biol. 127, 947 –961 (1994).

    Article  CAS  Google Scholar 

  31. Shaw, M. K., Roos, D. S. & Tilney, L. G. Acidic compartments and rhoptry formation in Toxoplasma gondii. Parasitology 117, 435– 443 (1998).

    Article  CAS  Google Scholar 

  32. Jaikaria, N. S., Rozario, C., Ridley, R. G. & Perkins, M. E. Biogenesis of rhoptry organelles in Plasmodium falciparum. Mol. Biochem. Parasitol. 57, 269–280 ( 1993).

    Article  CAS  Google Scholar 

  33. Dittie, A. S., Hajibagheri, N. & Tooze, S. A. The AP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is regulated by ADP-ribosylation factor. J. Cell Biol. 132, 523–536 (1996).

    Article  CAS  Google Scholar 

  34. Nesterov, A., Carter, R. E., Sorkina, T. & Sorkin, A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant µ2 subunit and its effect on endocytosis . EMBO J 18, 2489–2499 (1999).

    Article  CAS  Google Scholar 

  35. Nakaar, V., Samuel B. U., Ngo, E. O. & Joiner, K. A. Targeted disruption of nucleoside triphosphate hydrolase by antisense RNA inhibits Toxoplasma gondii proliferation. J. Biol. Chem. 274, 5083–5087 (1999).

    Article  CAS  Google Scholar 

  36. Sadak, A., Taghy, Z., Fortier, B. & Dubremetz, J-F. Characterization of a family of rhoptry proteins of Toxoplasma gondii. Mol. Biochem. Parasitol. 28, 203–211 (1988).

    Article  Google Scholar 

  37. Ooi, C. E. et al. Altered expression of a novel adaptin leads to defective pigment granule biogenesis in the Drosophila eye color mutant garnet. EMBO J. 16, 4508–4518 ( 1997).

    Article  CAS  Google Scholar 

  38. Seymor et al. A candidate gene for the mouse pearl (pe) mutation which affects subcellular organelles. Mol. Biol. Cell 8, (suppl.) 227 (1997).

  39. Swank, R. T., Novak, E. K., McGarry, M. P., Rusiniak, M. E. & Feng, L. Mouse models of Hermansky Pudlak syndrome: a review. Pigment Cell Res. 11, 60– 80 (1998).

    Article  CAS  Google Scholar 

  40. Moreno, S. N. J. & Zhong, L. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem. J. 313, 655–659 (1996).

    Article  CAS  Google Scholar 

  41. Mathews, P. M., Martinie, J. B. & Famrough, D. M. The pathway and targeting signal for delivery of the integral membrane glycoprotein LEP100 to lysosomes. J. Cell Biol. 118, 1027–1040 ( 1992).

    Article  CAS  Google Scholar 

  42. Williams, M. A. & Fukuda, M. Accumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail. J. Cell Biol. 111 , 955–966 (1990).

    Article  CAS  Google Scholar 

  43. Boman, A. L. & Kahn, R. A. Arf proteins: the membrane traffic police? Trends Biochem. Sci. 20, 147–150 (1995).

    Article  CAS  Google Scholar 

  44. Ghosh, R. N., Mallet, W. G., Soe, T. T., McGraw, T. E. & Maxfield, F. R. An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J. Cell Biol. 142, 923–936 (1998).

    Article  CAS  Google Scholar 

  45. Voorhees, P. et al. An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO J. 14, 4961–4975 (1995).

    Article  CAS  Google Scholar 

  46. Green, S. A. & Kelly, R. B. Low density lipoprotein receptor and cation-independent mannose-6-phosphate receptor are transported from the cell surface to the Golgi apparatus at equal rates in PC12 cells. J. Cell Biol. 117, 47–55 (1992).

    Article  CAS  Google Scholar 

  47. Stedman, T. T. & Joiner, K. A. in Advances in Cell and Molecular Biology of Membranes and Organelles (ed. Gordon, S.) Vol 6, 233–261 (JAI, Greenwich, Connecticut, 1999).

  48. Nichols, B. A., Chiappino, M. L. & Pavesio, C. E. N. Endocytosis at the micropore of Toxoplasma gondii . Parasitol. Res. 80, 91– 98 (1994).

    Article  CAS  Google Scholar 

  49. Ponnambalam, S., Rabouille, C., Luzio, J. P., Nilsson, T. & Warren, G. The TGN38 glycoprotein contains two non-overlapping signals that mediate localization to the trans-Golgi network. J. Cell Biol. 125, 253–268 (1994).

    Article  CAS  Google Scholar 

  50. Karsten, V., Qi, H., Beckers, C. J. M. & Joiner, K. A. targeting the secretory pathway of Toxoplasma gondii. Methods (Orlando) 13, 103–111 ( 1997).

    CAS  Google Scholar 

  51. Roos, D. S., Donald, R. G. K., Morrissette, N. S. & Moulton, A. L. C. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol. 45, 27– 63 (1994).

    Article  CAS  Google Scholar 

  52. Ajioka, J. W. et al. Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa. Genome Res. 8, 18–28 (1998).

    Article  CAS  Google Scholar 

  53. Morrisette, N. S., Bedian, V., Webster, P. & Roos, D. S. Characterization of the extreme apical antigens from Toxoplasma gondii. Exp. Parasitol. 79, 445–459 ( 1994).

    Article  Google Scholar 

  54. Ohno, H. et al. Interaction of endocytic signals from the HIV-1 envelope glycoprotein complex with members of the adaptor medium chain family. Virology 238, 305–315 ( 1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service Grant ROI AI30060 from the National Institutes of Health and a Scholar Award in Molecular Parasitology from the Burroughs Wellcome Fund to K.A.J., by National Institutes of Health training grant 5T32AI-07404 to H.M.N., by a South African Foundation for Research Development postdoctoral fellowship to H.C.H, and by an individual National Research Service Award 5F32AI-10044 to H.M.N. We thank N. Andrews for critical reading of the manuscript.

Correspondence and requests for materials should be addressed to K.A.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Joiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppe, H., Ngô, H., Yang, M. et al. Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms.. Nat Cell Biol 2, 449–456 (2000). https://doi.org/10.1038/35017090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing