Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PI-loting membrane traffic

Abstract

Phosphoinositides (PIs) undergo phosphorylation/dephosphorylation cycles through organelle-specific PI kinases and PI phosphatases that lead to distinct subcellular distributions of the individual PI species. Specific PIs control the correct timing and location of many trafficking events. Their ultimate mode of action is not always well defined, but it includes localized recruitment of transport machinery, allosteric regulation of PI-binding proteins and changes in the physical properties of the membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phosphorylation/dephosphorylation cycles of PIs.
Figure 2: 'PI-map' of the endocytic and exocytic pathways.

Similar content being viewed by others

References

  1. Varnai, P. et al. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase C delta 1 and p130. J. Biol. Chem. 277, 27412–27422 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Levine, T.P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Godi, A. et al. FAPPs control Golgi-to-cell surface membrane traffic by binding ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Malecz, N. et al. Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr. Biol. 10, 1383–1386 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell Biol. 1, 280–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Donaldson, J.G. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278, 41573–41576 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Aikawa, Y. & Martin, T.F. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J. Cell Biol. 162, 647–659 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simonsen, A. et al. EEA1 links PtdIns(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci. 114, 1041–1052 (2001).

    CAS  PubMed  Google Scholar 

  11. Gaidarov, I., Smith, M.E., Domin, J. & Keen, J.H. The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol. Cell 7, 443–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330–335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Matteis, M., Godi, A. & Corda, D. Phosphoinositides and the Golgi complex. Curr. Opin. Cell Biol. 14, 434–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, T.F. PtdIns(4,5)P(2) regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13, 493–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Botelho, R.J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vieira, O.V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gillooly, D.J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mishra, S.K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21, 4915–4926 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishikawa, K. et al. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 273, 23126–23133 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hao, W. et al. Regulation of AP-3 function by inositides. Identification of phosphatidylinositol 3,4,5-trisphosphate as a potent ligand. J. Biol. Chem. 272, 6393–6398 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Matsuoka, K. et al. COPtdInsI-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Chaudhary, A. et al. Specific interaction of Golgi coatomer protein alpha-COP with phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 8344–8350 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y.J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mills, I.G. et al. EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell Biol. 160, 213–222 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Schuske, K.R. et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40, 749–762 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Terebiznik, M.R. et al. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Rozelle, A.L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Klopfenstein, D.R., Tomishige, M., Stuurman, N. & Vale, R.D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Christoforidis, S., McBride, H.M., Burgoyne, R.D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Mayer, A. et al. Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Mol. Biol. Cell 11, 807–817 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boeddinghaus, C., Merz, A.J., Laage, R. & Ungermann, C. A cycle of Vam7p release from and PtdIns 3-P-dependent rebinding to the yeast vacuole is required for homotypic vacuole fusion. J. Cell Biol. 157, 79–89 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Godi, A. et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl Acad. Sci. USA 95, 8607–8612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Randazzo, P.A., Nie, Z., Miura, K. & Hsu, V.W. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci. STKE 59, DOI: 10.1126/stke.2000.59.re1 (2000).

  36. Zheng, J. et al. Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity. J. Mol. Biol. 255, 14–21 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Kutateladze, T. & Overduin, M. Structural mechanism of endosome docking by the FYVE domain. Science 291, 1793–1796 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Cheever, M.L. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biol. 3, 613–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Dumas, J.J. et al. Multivalent endosome targeting by homodimeric EEA1. Mol. Cell 8, 947–958 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Mao, Y. et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Misra, S. & Hurley, J.H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Bravo, J. et al. The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol. Cell 8, 829–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Ford, M.G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Petiot, A., Faure, J., Stenmark, H. & Gruenberg, J. PtdIns3P signaling regulates receptor sorting but not transport in the endosomal pathway. J. Cell Biol. 162, 971–979 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suchy, S.F., Olivos-Glander, I.M. & Nussabaum, R.L. Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus. Hum. Mol. Genet. 4, 2245–2250 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Wishart, M.J. & Dixon, J.E. PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol. 12, 579–585 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Dang, H., Li, Z., Skolnik, E.Y. & Fares, H. Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol. Biol. Cell 15, 189–196 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Naga Prasad, S.V. et al. Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J. Cell Biol. 158, 563–575 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arico, S. et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276, 35243–35246 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Walker, S.M., Downes, C.P. & Leslie, N.R. TPtdInsP: a novel phosphoinositide 3-phosphatase. Biochem. J. 360, 277–283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, Y. et al. PTEN 2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipid phosphatase. J. Biol. Chem. 276, 21745–21753 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Pendaries, C., Tronchere, H., Plantavid, M. & Payrastre, B. Phosphoinositide signaling disorders in human diseases. FEBS Lett. 546, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Norris, F.A., Wilson, M.P., Wallis, T.S., Galyov, E.E. & Majerus, P.W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vergne, I., Chua, J. & Deretic, V. Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PtdIns3P-dependent membrane trafficking. Traffic 4, 600–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Simonsen, A., Wurmser, A.E., Emr, S.D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Schu, P.V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Fouraux, M.A. et al. Rabip4? is an effector of rab5 and rab4 and regulates transport through early endosomes. Mol. Biol. Cell 15, 611–624 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu, Y., Hortsman, H., Seet, L., Wong, S.H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nature Cell Biol. 3, 658–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Rudge, S.A., Anderson, D.M. & Emr, S.D. Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14–Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol. Biol. Cell 15, 24–36 (2003).

    Article  PubMed  Google Scholar 

  62. Panaretou, C. & Tooze, S.A. Regulation and recruitment of phosphatidylinositol 4-kinase on immature secretory granules is independent of ADP-ribosylation factor 1. Biochem. J. 363, 289–295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bankaitis, V.A., Aitken, J.R., Cleves, A.E. & Dowhan, W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347, 561–562 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Berrie for reading the manuscript and E. Fontana for artwork preparation. This work has been supported in part by the Italian Association for Cancer Research, Telethon Italia, European Community and by the Italian Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta De Matteis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matteis, M., Godi, A. PI-loting membrane traffic. Nat Cell Biol 6, 487–492 (2004). https://doi.org/10.1038/ncb0604-487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0604-487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing