Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism

Abstract

Exocytosis, the fusion of secretory vesicles with the plasma membrane to allow release of the contents of the vesicles into the extracellular environment, and endocytosis, the internalization of these vesicles to allow another round of secretion, are coupled. It is, however, uncertain whether exocytosis and endocytosis are tightly coupled, such that secretory vesicles fuse only transiently with the plasma membrane before being internalized (the ‘kiss-and-run’ mechanism), or whether endocytosis occurs by an independent process following complete incorporation of the secretory vesicle into the plasma membrane. Here we investigate the fate of single secretory vesicles after fusion with the plasma membrane by measuring capacitance changes and transmitter release in rat chromaffin cells using the cell-attached patch-amperometry technique. We show that raised concentrations of extracellular calcium ions shift the preferred mode of exocytosis to the kiss-and-run mechanism in a calcium-concentration-dependent manner. We propose that, during secretion of neurotransmitters at synapses, the mode of exocytosis is modulated by calcium to attain optimal conditions for coupled exocytosis and endocytosis according to synaptic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catecholamine release during fast kiss-and-run and permanent fusion events in rat chromaffin cells, recorded by patch amperometry.
Figure 2: Comparison of fast kiss-and-run and permanent fusion events.
Figure 3: Kiss-and-run kinetics in fast and slow fusion events.
Figure 4: Ca2+ dependence of the closure of the exocytotic fusion pore.
Figure 5: Model for coupled exocytosis and endocytosis, incorporating our experimental results.

Similar content being viewed by others

References

  1. Heuser, J. E. & Reese, T. S.. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction . J. Cell Biol. 133, 315– 344 (1973).

    Article  Google Scholar 

  2. Ceccarelli, B. & Hurlbut, W. P. Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 87, 297–303 ( 1980).

    Article  CAS  Google Scholar 

  3. Koenig, J. H. & Ikeda, K. Synaptic vesicles have two distinct recycling pathways. J. Cell Biol. 135, 797 –808 (1996).

    Article  CAS  Google Scholar 

  4. Almers, W. & Tse, F. W. Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis? Neuron 4, 813–818 (1990).

    Article  Google Scholar 

  5. Neher, E. Secretion without full fusion. Nature 363, 497–498 (1993).

    Article  CAS  Google Scholar 

  6. Fesce, R., Grohovaz, F., Valtorta, F. & Meldolesi, J. Neurotransmitter release: fusion or "kiss-and-run"? Trends Cell Biol. 4, 1–4 ( 1994).

    Article  CAS  Google Scholar 

  7. Klingauf, J., Kavalali, E. T. & Tsien, R. W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581– 585 (1998).

    Article  CAS  Google Scholar 

  8. Murthy, V. N. & Stevens, C. Synaptic vesicles retain their identity through the endocytic cycle. Nature 392, 497–501 (1998).

    Article  CAS  Google Scholar 

  9. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 79, 6712–6716 (1982).

    Article  CAS  Google Scholar 

  10. Alvarez de Toledo, G., Fernandez-Chacón, R. & Fernandez, J. M. Release of secretory products during transient vesicle fusion. Nature 363, 554 –558 (1993).

    Article  CAS  Google Scholar 

  11. Albillos, A. et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512 ( 1997).

    Article  CAS  Google Scholar 

  12. Morgan, A. & Burgoyne, R. D. Common mechanisms for regulated exocytosis in the chromaffin cell and the synapse. Cell Dev. Biol. 8, 141–149 ( 1997).

    Article  CAS  Google Scholar 

  13. Neher, E. Vesicle pools and Ca2+microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  14. Chow, R. H., Klingauf, J. & Neher, E. Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proc. Natl Acad. Sci. USA 91, 12765–12769 (1994).

    Article  CAS  Google Scholar 

  15. Lollike, K. Borregaard, N & Lindau, M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J. Cell Biol. 129, 99–104 (1995).

    Article  CAS  Google Scholar 

  16. Breckenridge, L. J. & Almers, W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328, 814–817 ( 1987).

    Article  CAS  Google Scholar 

  17. Zimmerberg, J., Curran, M., Cohen, F. S. & Brodwick, M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl Acad. Sci. USA 84, 1585–1589 ( 1987).

    Article  CAS  Google Scholar 

  18. Chow, R. H., von Ruden L., & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 ( 1992).

    Article  CAS  Google Scholar 

  19. Jankowski, J. A., Schroeder, T. J., Ciolkowski, E. L., & Wightman, R. M. Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells. J. Biol. Chem. 268, 14694 –14700 (1993).

    CAS  PubMed  Google Scholar 

  20. Zhou, Z., Misler, S. & Chow, R. H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J. 70, 1543– 1552 (1996).

    Article  CAS  Google Scholar 

  21. Moser, T. & Neher, E. Estimation of mean exocytic vesicle capacitance in mouse adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 94, 6735–6740 ( 1997).

    Article  CAS  Google Scholar 

  22. von Gersdorff, H. & Matthews, G. Inhibiton of endocytosis by high elevated internal calcium in a synaptic terminal. Nature 370, 652–655 ( 1994).

    Article  CAS  Google Scholar 

  23. Thomas, P., Lee, A. K., Wong, J. G. & Almers, W. A Triggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J. Cell Biol. 124, 667– 675 (1994).

    Article  CAS  Google Scholar 

  24. Artalejo, C. R., Henley, J. R., McNiven, M. A. & Palfrey, H. C. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc. Natl Acad. Sci. USA 92, 8328–8332 ( 1995).

    Article  CAS  Google Scholar 

  25. Neher, E. & Zucker, R. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30 (1993).

    Article  CAS  Google Scholar 

  26. Heinemann, C. R., Chow, R., Neher, E. & Zucker, R. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys. J. 67, 2546–2557 (1994).

    Article  CAS  Google Scholar 

  27. Smith, C. & Neher, E. Multiple forms of endocytosis in bovine chromaffin cells. J. Cell Biol. 139, 885–894 (1997).

    Article  CAS  Google Scholar 

  28. Verdugo P., Aitken, M. Aitken, M., Langley, L. & Villalon, M. Molecular mechanism of product storage and release of mucin secretion. II. The role of extracellular Ca2+. Biorheol. 24, 625–633 ( 1987).

    Article  CAS  Google Scholar 

  29. Curran, M. J. & Brodwick, M. S. Ionic control of the size of the vesicle matrix of beighe mouse mast cells. J. Gen Physiol. 98, 770–790 ( 1991).

    Article  Google Scholar 

  30. Fernandez, J.M. & Villalon,M. Verdugo,P. Reversible condensation of mast cell secretory products in vitro. in vitro Biophys. 59, 1022–1027 (1991).

    CAS  Google Scholar 

  31. Parsons, T.D. & Coorsen,J. R. Hoorstmann,H. Almers,W. Dock granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15, 1085–1096 ( 1995).

    Article  CAS  Google Scholar 

  32. Chow, R. H. & von Ruden,L. in Single Channel Recording (eds Sakmann, B. & Neher, E.).

  33. Spruce, A. E. & Breckenridge,J. L. Lee,A. K. Almers,W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4, 643– 654 ( 1990).

    Article  CAS  Google Scholar 

  34. Hill, B. Ionic Channels of Excitable Membranes 1–607 Sinauuer Associates, Sunderland, Massachusetts, 1992.

    Google Scholar 

Download references

Acknowledgements

We thank J. L. Romero for technical assistance and D. Mir for comments on the manuscript. This work was supported by grants from the Spanish Ministerio de Educación y Cultura (DGES; to G.A.T.), from the Junta de Andalucia (to L.T.), and by the Deutsche Forschungsgemeinschaft (to M.L.). E.A. was supported by a fellowship from DGES.

Correspondence and requests for materials should be addressed to G.A.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Alvarez de Toledo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alés, E., Tabares, L., Poyato, J. et al. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol 1, 40–44 (1999). https://doi.org/10.1038/9012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing