Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring

Abstract

The GTPase dynamin plays an essential part in endocytosis by catalysing the fission of nascent clathrin-coated vesicles from the plasma membrane. Using preformed phosphatidylinositol-4,5-bisphosphate-containing lipid nanotubes as a membrane template for dynamin self-assembly, we investigate the conformational changes that arise during GTP hydrolysis by dynamin. Electron microscopy reveals that, in the GTP-bound state, dynamin rings appear to be tightly packed together. After GTP hydrolysis, the spacing between rings increases nearly twofold. When bound to the nanotubes, dynamin"s GTPase activity is cooperative and is increased by three orders of magnitude compared with the activity of unbound dynamin. An increase in the kcat (but not the Km) of GTP hydrolysis accounts for the pronounced cooperativity. These data indicate that a novel, lengthwise (‘spring-like’) conformational change in a dynamin helix may participate in vesicle fission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purified dynamin associates with lipid nanotubes containing PtdIns(4,5)P2 and exhibits high GTPase activity.
Figure 2: The conformational states of dynamin in the presence of different nucleotides.
Figure 3: High rates of GTP hydrolysis by tubule-associated dynamin.
Figure 4: Cooperativity and V-type allostery of dynamin’s GTPase activity.
Figure 5: Potential involvement of stacks of rings in optimal GTP hydrolysis.
Figure 6: Model for a concerted helical expansion that drives endocytosis.

Similar content being viewed by others

References

  1. Roos, J. & Kelly, R. B. Is dynamin really a ‘pinchase’? Trends Cell Biol. 7, 257– 259 (1997).

    Article  CAS  Google Scholar 

  2. McNiven, M. A. Dynamin: a molecular motor with pinchase action. Cell 94, 151–154 (1998).

    Article  CAS  Google Scholar 

  3. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process . Annu. Rev. Biochem. 66, 511– 548 (1997).

    Article  CAS  Google Scholar 

  4. DeCamilli, P. & Takei, K. Molecular mechanisms in synaptic vesicle endocytosis and recycling. Neuron 16, 481 –486 (1996).

    Article  CAS  Google Scholar 

  5. Poodry, C. A. & Edgar, L. Reversible alterations in the neuromuscular junctions of Drosophila melanogaster bearing a temperature-sensitive mutation, shibire. J. Cell Biol. 81, 520–527 (1979).

    Article  CAS  Google Scholar 

  6. Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844 –3860 (1989).

    Article  CAS  Google Scholar 

  7. Ramaswami, M., Krishnan, K. S. & Kelly, R. B. Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron 13, 363–375 ( 1994).

    Article  CAS  Google Scholar 

  8. Takei, K., McPherson, P. S., Schmid, S. L. & DeCamilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTPγS in nerve terminals. Nature 374, 186– 190 (1995).

    Article  CAS  Google Scholar 

  9. Herskovits, J. S., Burgess, C. C., Obar, R. A. & Vallee, R. B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565–578 (1993).

    Article  CAS  Google Scholar 

  10. van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).

    Article  CAS  Google Scholar 

  11. Wigge, P. & McMahon, H. T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21, 339–344 ( 1998).

    Article  CAS  Google Scholar 

  12. Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259– 263 (1997).

    Article  CAS  Google Scholar 

  13. Marks, B. & McMahon, H. T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 ( 1998).

    Article  CAS  Google Scholar 

  14. Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & DeCamilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).

    Article  CAS  Google Scholar 

  15. Owen, D. J. et al. Crystal structure of the Amphiphysin-2 SH3 domain and its role in prevention of dynamin ring formation. EMBO J. 17, 5273–5285 (1998).

    Article  CAS  Google Scholar 

  16. Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).

  17. Achiriloaie, M., Barylko, B. & Albanesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor mediated endocytosis. Mol. Cell. Biol. 19, 1410–1415 (1999).

  18. Zheng, J. et al. Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity . J. Mol. Biol. 255, 14– 21 (1996).

    Article  CAS  Google Scholar 

  19. Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton"s tyrosine kinase . EMBO J. 15, 6241–6250 (1996).

    Article  CAS  Google Scholar 

  20. Klein, D. E., Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J. Biol. Chem. 273, 27725–27733 (1998).

    Article  CAS  Google Scholar 

  21. Barylko, B. et al. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides . J. Biol. Chem. 273, 3791– 3797 (1998).

    Article  CAS  Google Scholar 

  22. McPherson, P.S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  Google Scholar 

  23. Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131– 141 (1998).

    Article  CAS  Google Scholar 

  24. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 ( 1998).

    Article  CAS  Google Scholar 

  25. Koenig, J. H. & Ikeda, K. Synaptic vesicles have two distinct recycling pathways. J. Cell Biol. 135, 797 –808 (1996).

    Article  CAS  Google Scholar 

  26. Deutsch, J. W. & Kelly, R. B. Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry 20, 378–385 ( 1981).

    Article  CAS  Google Scholar 

  27. Tuma, P. L., Stachniak, M. C. & Collins, C. A. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. J. Biol. Chem. 268 , 17240–17246 (1993).

    CAS  Google Scholar 

  28. Steinweis, P. C. & Gilman, A. G. Aluminium: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc. Natl Acad. Sci. USA 79, 4888–4891 (1982).

    Article  Google Scholar 

  29. Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J. Biol. Chem. 272, 28030– 28035 (1997).

    Article  CAS  Google Scholar 

  30. Shpetner, H. S. & Vallee, R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 ( 1992).

    Article  CAS  Google Scholar 

  31. Gout, I. et al. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).

    Article  CAS  Google Scholar 

  32. Herskovits, J. S., Shpetner, H. S., Burgess, C. C. & Vallee, R. B. Microtubules and src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc. Natl Acad. Sci. USA 90, 11468–11472 (1993).

    Article  CAS  Google Scholar 

  33. Robinson, P. J. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 365, 107– 108 (1993).

    Article  Google Scholar 

  34. Tuma, P. L. & Collins, C. A. Activation of dynamin GTPase is a result of positive cooperativity. J. Biol. Chem. 269, 30842–30847 (1994).

    CAS  Google Scholar 

  35. Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity . J. Biol. Chem. 271, 22310– 22314 (1996).

    Article  CAS  Google Scholar 

  36. Shpetner, H. S. & Vallee, R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions among microtubules. Cell 59, 421– 432 (1989).

    Article  CAS  Google Scholar 

  37. Otero, A. D. Transphosphorylation and G protein activation. Biochem. Pharmacol. 39, 1399–1404 ( 1990).

    Article  CAS  Google Scholar 

  38. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88– 118 (1965).

    Article  CAS  Google Scholar 

  39. Smith, C. J., Grigorieff, N. & Pearse, B. M. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J. 17, 4943–4953 ( 1998).

    Article  CAS  Google Scholar 

  40. Heuser, J. E. The role of coated vesicles in recycling of synaptic vesicle membrane. Cell Biol. Int. Report 13, 1063–1076 (1989).

    Article  CAS  Google Scholar 

  41. Needham, D. & Nunn, R. S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 997–1009 ( 1990).

    Article  CAS  Google Scholar 

  42. Block, S. M. Nanometers and piconewtons — the macromolecular mechanics of kinesin . Trends Cell Biol. 5, 169 ( 1995).

    Article  CAS  Google Scholar 

  43. Takei, K., Slepnev, V. I., Hauck, V. & De Camilli, P. Amphiphysin tubulates protein free liposomes and regulates the formation of clathrin- and dynamin- coated structures in vitro. Mol. Biol. Cell Abstr. 9-S, 130 (1998).

    Google Scholar 

  44. Polyakov, A., Severinova, E. & Darst, S. A. Three dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. Cell 83, 365–373 ( 1995).

    Article  CAS  Google Scholar 

  45. Warnock, D. E. & Schmid, S. L. Dynamin GTPase, a force-generating molecular switch. Bioessays 18, 885–894 (1996).

    Article  CAS  Google Scholar 

  46. Goldstein, A. S., Lukyanov, A. N., Carlson, P. A., Yager, P. & Gelb, M. H. Formation of high-axial-ratio-microstructures from natural and synthetic sphingolipids. Chem. Phys. Lipids 88, 21–36 (1997).

    Article  CAS  Google Scholar 

  47. Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8, 2003– 2015 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. M. Kozlov for discussions and providing unpublished data, and N. Unwin for encouragement and discussions. This work was supported by the MRC and an NSF-NATO Postdoctoral Fellowship (M.H.B.S.).

Correspondence and requests for materials should be addressed to H.T.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey T. McMahon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stowell, M., Marks, B., Wigge, P. et al. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat Cell Biol 1, 27–32 (1999). https://doi.org/10.1038/8997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing