Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Division of labour in ESCRT complexes

Formation of multivesicular bodies (MVBs) from endosomes or budding of enveloped virus such as HIV-I from the plasma membrane require the ESCRT (endosomal sorting complex required for transport) complexes. An in vitro reconstitution assay unambiguously identifies the function of each ESCRT complex in the sequential events of MVB morphogenesis, from cargo clustering and membrane bud formation to sequestration of cargoes in vesicles, and fission of the vesicles into the lumen of the endosome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the sequence leading to intralumenal vesicle (ILV) morphogenesis by ESCRT complexes.

References

  1. Antonny, B. Curr. Opin. Cell Biol. 18, 386–394 (2006).

    Article  CAS  Google Scholar 

  2. Römer, W. et al. Nature 450, 670–675 (2007).

    Article  Google Scholar 

  3. McMahon, H. T. & Gallop, J. L. Nature 438, 590–596 (2005).

    Article  CAS  Google Scholar 

  4. Zimmerberg, J. & Kozlov, M. M. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  5. Roux, A.l., Uyhazi, K., Frost, A. & De Camilli, P. Nature 441, 528–531 (2006).

    Article  CAS  Google Scholar 

  6. Bashkirov, P. V. et al. Cell 135, 1276–1286 (2008).

    Article  CAS  Google Scholar 

  7. Gruenberg, J. & Stenmark, H. Nat. Rev. Mol. Cell Biol. 5, 317–324 (2004).

    Article  CAS  Google Scholar 

  8. Hurley, J. H. & Emr, S. D. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006).

    Article  CAS  Google Scholar 

  9. Wollert, T. & Hurley, J. H. Nature 464, 864–869 (2010).

    Article  CAS  Google Scholar 

  10. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Nature 458, 172–177 (2009).

    Article  CAS  Google Scholar 

  11. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. J. Cell Biol. 162, 413–423 (2003).

    Article  CAS  Google Scholar 

  12. Gill, D. J. et al. EMBO J. 26, 600–612 (2007).

    Article  CAS  Google Scholar 

  13. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. J. Cell Biol. 180, 389–402 (2008).

    Article  CAS  Google Scholar 

  14. Lata, S. et al. Science 321, 1354–1357 (2008).

    Article  CAS  Google Scholar 

  15. Lenz, M., Crow, D. J. G. & Joanny, J.-F. Phys. Rev. Lett. 103, 038101–038104 (2009).

    Article  Google Scholar 

  16. Manneville, J.-B. et al. Proc. Natl. Acad. Sci. USA 105, 16946–16951 (2008).

    Article  CAS  Google Scholar 

  17. Fabrikant, G. et al. PLoS Comput. Biol. 5, e1000575 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassereau, P. Division of labour in ESCRT complexes. Nat Cell Biol 12, 422–423 (2010). https://doi.org/10.1038/ncb0510-422

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0510-422

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing