Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting of immune signalling networks by bacterial pathogens

Abstract

Host defence against microbial pathogens requires appropriate coordination of multiple signalling pathways. These pathways are triggered by innate immune recognition of conserved microbial molecules, and initiate an inflammatory cascade that involves recruitment of leukocytes to the site of infection, activation of antimicrobial effector mechanisms and induction of an adaptive immune response that promotes clearance of infection and long-term immune memory. Microbial pathogens possess specialized proteins termed virulence factors, which interfere with host defence at several levels. Many virulence factors from diverse pathogens have been identified in recent years and their functions linked to disruption of essential processes of immune defence, from signalling to phagocytosis. Although the diversity of pathogens and virulence factors is immense, common themes have emerged with regard to how microbial pathogens interfere with immune responses. Here we discuss recent advances in our understanding of how virulence factors target innate and adaptive immune responses, focusing on bacterial pathogens. We also propose that pathogens responsible for causing acute infection tend to target central components (hubs) of cellular signalling pathways, causing global disruption of the host response. By contrast, pathogens that cause chronic or persistent infections tend to target more peripheral signalling network components (nodes) to promote pathogen persistence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model scale-free network.
Figure 2: Innate immune network components (blue and pink ovals) and their targeting by bacterial virulence factors.

Similar content being viewed by others

References

  1. Monack, D. M., Mueller, A. & Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Rev. Microbiol 2, 747–765 (2004).

    Article  CAS  Google Scholar 

  2. Seifert, H. S. & DiRita, V. J. Evolution of microbial pathogens (ASM Press, Washington, DC, 2006).

    Book  Google Scholar 

  3. Wickham, M. E., Brown, N. F., Boyle, E. C., Coombes, B. K. & Finlay, B. B. rulence is positively selected by transmission success between mammalian hosts. Curr. Biol. 17, 783–788 (2007).

    Article  CAS  Google Scholar 

  4. Baumler, A. J., Tsolis, R. M., Ficht, T. A. & Adams, L. G. Evolution of host adaptation in Salmonella enterica. Infect. Immun. 66, 4579–4587 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mills, S. D. et al. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl Acad. Sci. USA 94, 12638–12643 (1997).

    Article  CAS  Google Scholar 

  6. Monack, D. M., Mecsas, J., Ghori, N. & Falkow, S. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl Acad. Sci. USA 94, 10385–10390 (1997).

    Article  CAS  Google Scholar 

  7. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923 (1999).

    Article  CAS  Google Scholar 

  8. Collier-Hyams, L. S. et al. Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-κB pathway. J. Immunol. 169, 2846–2850 (2002).

    Article  CAS  Google Scholar 

  9. Jones, R. M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3, 233–244 (2008).

    Article  CAS  Google Scholar 

  10. Mazurkiewicz, P. et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol. Microbiol. 67, 1371–1383 (2008).

    Article  CAS  Google Scholar 

  11. Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nature Immunol. 8, 47–56 (2007).

    Article  CAS  Google Scholar 

  12. Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315, 1000–1003 (2007).

    Article  CAS  Google Scholar 

  13. Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  Google Scholar 

  14. Kim, D. W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA 102, 14046–14051 (2005).

    Article  CAS  Google Scholar 

  15. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  CAS  Google Scholar 

  16. Diao, J., Zhang, Y., Huibregtse, J. M., Zhou, D. & Chen, J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nature Struct. Mol. Biol. 15, 65–70 (2008).

    Article  CAS  Google Scholar 

  17. Rytkonen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA 104, 3502–3507 (2007).

    Article  Google Scholar 

  18. Zhang, Y., Higashide, W. M., McCormick, B. A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62, 786–793 (2006).

    Article  CAS  Google Scholar 

  19. Bhavsar, A. P., Guttman, J. A. & Finlay, B. B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007).

    Article  CAS  Google Scholar 

  20. Rytkonen, A. & Holden, D. W. Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe 1, 13–22 (2007).

    Article  CAS  Google Scholar 

  21. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  CAS  Google Scholar 

  22. Albert, R. Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005).

    Article  CAS  Google Scholar 

  23. Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. 91, 138701 (2003).

    Article  Google Scholar 

  24. Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    Article  CAS  Google Scholar 

  25. Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  CAS  Google Scholar 

  26. Park, J. M., Greten, F. R., Li, Z. W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048–2051 (2002).

    Article  CAS  Google Scholar 

  27. Zhang, Y., Ting, A. T., Marcu, K. B. & Bliska, J. B. Inhibition of MAPK and NF-κB pathways is necessary for rapid apoptosis in macrophages infected with Yersinia. J. Immunol. 174, 7939–7949 (2005).

    Article  CAS  Google Scholar 

  28. Yamamoto, M., Takeda, K. & Akira, S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol. 40, 861–868 (2004).

    Article  CAS  Google Scholar 

  29. O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  30. Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nature Med. 14, 399–406 (2008).

    Article  CAS  Google Scholar 

  31. Newman, R. M., Salunkhe, P., Godzik, A. & Reed, J. C. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect. Immun. 74, 594–601 (2006).

    Article  CAS  Google Scholar 

  32. Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    Article  CAS  Google Scholar 

  33. Chen, G., Zhuchenko, O. & Kuspa, A. Immune-like phagocyte activity in the social amoeba. Science 317, 678–681 (2007).

    Article  CAS  Google Scholar 

  34. Cosson, P. & Soldati, T. Eat, kill or die: when amoeba meets bacteria. Curr. Opin. Microbiol. 11, 271–276 (2008).

    Article  CAS  Google Scholar 

  35. Bliska, J. B., Guan, K. L., Dixon, J. E. & Falkow, S. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc. Natl Acad. Sci. USA 88, 1187–1191 (1991).

    Article  CAS  Google Scholar 

  36. Rosqvist, R., Bolin, I. & Wolf-Watz, H. Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect. Immun. 56, 2139–2143 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Andersson, K. et al. YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol. Microbiol. 20, 1057–1069 (1996).

    Article  CAS  Google Scholar 

  38. Yao, T., Mecsas, J., Healy, J. I., Falkow, S. & Chien, Y. Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, yopH. J. Exp. Med. 190, 1343–1350 (1999).

    Article  CAS  Google Scholar 

  39. Gerke, C., Falkow, S. & Chien, Y. H. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation. J. Exp. Med. 201, 361–371 (2005).

    Article  CAS  Google Scholar 

  40. Marketon, M. M., DePaolo, R. W., DeBord, K. L., Jabri, B. & Schneewind, O. Plague bacteria target immune cells during infection. Science 309, 1739–1741 (2005).

    Article  CAS  Google Scholar 

  41. Deleuil, F., Mogemark, L., Francis, M. S., Wolf-Watz, H. & Fallman, M. Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell Microbiol. 5, 53–64 (2005).

    Article  Google Scholar 

  42. Monack, D. M., Bouley, D. M. & Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J. Exp. Med. 199, 231–241 (2004).

    Article  CAS  Google Scholar 

  43. Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M. C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282, 677–686 (1999).

    Article  CAS  Google Scholar 

  44. Saunders, B. M. & Cooper, A. M. Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol. Cell Biol. 78, 334–341 (2000).

    Article  CAS  Google Scholar 

  45. Chan, J. & Flynn, J. The immunological aspects of latency in tuberculosis. Clin.mmunol. 110, 2–12 (2004).

    Article  CAS  Google Scholar 

  46. Flynn, J. L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  Google Scholar 

  47. Cosma, C. L., Humbert, O. & Ramakrishnan, L. Superinfecting mycobacteria home to established tuberculous granulomas. Nature Immunol. 5, 828–835 (2004).

    Article  CAS  Google Scholar 

  48. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    Article  CAS  Google Scholar 

  49. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  50. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  51. Stetson, D. B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  Google Scholar 

  52. Shin, S. et al. Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog. 4, e1000220 (2008).

    Article  Google Scholar 

  53. Briken, V., Porcelli, S. A., Besra, G. S. & Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53, 391–403 (2004).

    Article  CAS  Google Scholar 

  54. Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004).

    Article  CAS  Google Scholar 

  55. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  Google Scholar 

  56. Gringhuis, S. I. et al. C-Type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. 26, 605–616 (2007).

  57. Constant, P. et al. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated phydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J.Biol. Chem. 277, 38148–38158 (2002).

    Article  CAS  Google Scholar 

  58. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  Google Scholar 

  59. Munoz-Elias, E. J. & McKinney, J. D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nature Med. 11, 638–644 (2005).

    Article  CAS  Google Scholar 

  60. Fang, F. C., Libby, S. J., Castor, M. E. & Fung, A. M. Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect. Immun. 73, 2547–2549 (2005).

    Article  CAS  Google Scholar 

  61. Lawley, T. D. et al. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2, e11 (2006).

    Article  Google Scholar 

  62. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  Google Scholar 

  63. Yazdankhah, S. P. et al. Distribution of serogroups and genotypes among disease associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece and Norway. J. Clin. Microbiol. 42, 5146–5153 (2004).

    Article  Google Scholar 

  64. Mulks, M. H., Plaut, A. G., Feldman, H. A. & Frangione, B. IgA proteases of two distinct specificities are released by Neisseria meningitidis. J. Exp. Med. 152, 1442–7 (1980).

    Article  CAS  Google Scholar 

  65. Woof, J. M. & Kerr, M. A. The function of immunoglobulin A in immunity. J. pathol. 208, 270–282 (2006).

    Article  CAS  Google Scholar 

  66. Cebra, J. J., Periwal, S. B., Lee, G., Lee, F. & Shroff, K. E. Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev. Immunol. 6, 13–18 (1998).

    Article  CAS  Google Scholar 

  67. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  Google Scholar 

  68. Mulks, M. H. & Plaut, A. G. IgA protease production as a characteristic distinguishing pathogenic from harmless Neisseriaceae. N. Engl. J. Med. 299, 973–976 (1978).

    Article  CAS  Google Scholar 

  69. Polissi, A. et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620–5629 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vitovski, S., Read, R. C. & Sayers, J. R. Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J. 13, 331–337 (1999).

    Article  CAS  Google Scholar 

  71. Gallos, L. K., Cohen, R., Argyrakis, P., Bunde, A. & Havlin, S. Stability and topology of scale-free networks under attack and defense strategies. Phys. Rev. Lett. 94, 188701 (2005).

    Article  Google Scholar 

  72. Lyczak, J. B., Cannon, C. L. & Pier, G. B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2, 1051–1060 (2000).

    Article  CAS  Google Scholar 

  73. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Medzhitov lab for scientific discussion, and Jelena Bezbradica, Elizabeth Kopp, Noah Palm and Dominik Schenten for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodsky, I., Medzhitov, R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11, 521–526 (2009). https://doi.org/10.1038/ncb0509-521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0509-521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing