Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b

Abstract

Transforming growth factor-β (TGFβ) is a cytokine that arrests epithelial cell division by switching off the proto-oncogene c-myc and rapidly switching on cyclin-dependent kinase (CDK) inhibitors such as p15INK4b. Gene responses to TGFβ involve Smad transcription factors that are directly activated by the TGFβ receptor. Why downregulation of c-myc expression by TGFβ is required for rapid activation of p15INK4b has remained unknown. Here we provide evidence that TGFβ signalling prevents recruitment of Myc to the p15INK4b transcriptional initiator by Myc-interacting zinc-finger protein 1 (Miz-1). This relieves repression and enables transcriptional activation by a TGFβ-induced Smad protein complex that recognizes an upstream p15INK4b promoter region and contacts Miz-1. Thus, two separate TGFβ-dependent inputs — Smad-mediated transactivation and relief of repression by Myc — keep tight control over p15INK4b activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The p15 Inr is a TGFβ response element.
Figure 2: TGFβ reduces levels of an endogenous Myc–Miz-1 complex that binds to the p15 Inr.
Figure 3: Miz-dZF interferes with recruitment of Myc to DNA.
Figure 4: Effect of Miz-dZF on the endogenous p15INK4b response to TGFβ.
Figure 5: Characterization of a Smad-binding region in the p15INK4b promoter.
Figure 6: Myc represses Smad-responsive enhancers.
Figure 7: Interaction of Smad and Miz-1.
Figure 8: Two-input model of TGFβ-mediated induction of p15INK4b.

Similar content being viewed by others

References

  1. Alexandrow, M. G. & Moses, H. L. Transforming growth factor β and cell cycle regulation. Cancer Res. 55, 1452–1457 (1995).

    CAS  PubMed  Google Scholar 

  2. Massagué, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295– 309 (2000).

    Article  Google Scholar 

  3. Daniel, C. W., Silberstein, G. B., Van Horn, K., Strickland, P. & Robinson, S. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization . Dev. Biol. 135, 20–30 (1989).

    Article  CAS  Google Scholar 

  4. Pierce, D. F. et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Dev. 7, 2308–2317 (1993).

    Article  CAS  Google Scholar 

  5. Nguyen, A. V. & Pollard, J. W. Transforming growth factor B3 induces cell death during the first stage of mammary gland involution. Development 127, 3107–3118 (2000).

    CAS  PubMed  Google Scholar 

  6. Gold, L. I. The role for transforming growth factorβ (TGF-β) in human cancer . Crit. Rev. Oncogenet. 10, 303– 360 (1999).

    CAS  Google Scholar 

  7. de Caestecker, M. P., Piek, E. & Roberts, A. B. Role of transforming growth factor-beta signaling in cancer. J. Natl Cancer Inst. USA 92, 1388 –1402 (2000).

    Article  CAS  Google Scholar 

  8. Fernandez-Pol, J. A., Talkad, V. D., Klos, D. J. & Hamilton, P. D. Suppression of the EGF-dependent induction of c-myc proto-oncogene expression by transforming growth factor beta in a human breast carcinoma cell line. Biochem. Biophys. Res. Commun. 144, 1197– 1205 (1987).

    Article  CAS  Google Scholar 

  9. Coffey, R. J. Jr et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol. Cell. Biol. 8, 3088–3093 ( 1988).

    Article  CAS  Google Scholar 

  10. Facchini, L. M. & Penn, L. Z. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights . FASEB J. 12, 633–651 (1998).

    Article  CAS  Google Scholar 

  11. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    Article  CAS  Google Scholar 

  12. Iavarone, A. & Massagué, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15. Nature 387, 417– 422 (1997).

    Article  CAS  Google Scholar 

  13. Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature 371, 257–261 (1994).

    Article  CAS  Google Scholar 

  14. Reynisdóttir, I., Polyak, K., Iavarone, A. & Massagué, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arest in response to TGF-β. Genes Dev. 9, 1831– 1845 (1995).

    Article  Google Scholar 

  15. Sandhu, C. et al. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B–Cdk4 complexes, and inhibits cyclin D1–Cdk4 association in human mammary epithelial cells. Mol. Cell. Biol. 17, 2458– 2467 (1997).

    Article  CAS  Google Scholar 

  16. Reynisdóttir, I. & Massagué, J. The subcellular location of p15INK4b and p27Kip1 coordinate their inhibitory interactions with cdk4 and Cdk2. Genes Dev. 11, 492–503 (1997).

    Article  Google Scholar 

  17. Datto, M. B. et al. Transforming growth factor-β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanisms. Proc. Natl Acad. Sci. USA 92, 5545–5549 (1995).

    Article  CAS  Google Scholar 

  18. Warner, B. J., Blain, S. W., Seoane, J. & Massague, J. Myc downregulation by transforming growth factor beta required for activation of the p15(INK4B) G(1) arrest pathway. Mol. Cell. Biol. 19, 5913–5922 (1999).

    Article  CAS  Google Scholar 

  19. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001).

    Article  CAS  Google Scholar 

  20. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 ( 1997).

    Article  CAS  Google Scholar 

  21. Li, J-M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X-F. Transforming growth factor-β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750–26753 (1995).

    Article  CAS  Google Scholar 

  22. Smale, S. T. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351, 73– 88 (1997).

    Article  CAS  Google Scholar 

  23. Feng, X. H., Lin, X. & Derynck, R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J. 19, 5178–5193 (2000).

    Article  CAS  Google Scholar 

  24. Brodin, G., Ahgren, A., ten Dijke, P., Heldin, C. H. & Heuchel, R. Efficient TGF-beta induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J. Biol. Chem. 275, 29023–29030 (2000).

    Article  CAS  Google Scholar 

  25. von Gersdorff, G. et al. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J. Biol. Chem. 275, 11320–11326 ( 2000).

    Article  CAS  Google Scholar 

  26. Denissova, N. G., Pouponnot, C., Long, J., He, D. & Liu, F. Transforming growth factor beta -inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl Acad. Sci. USA 97, 6397–6402 (2000).

    Article  CAS  Google Scholar 

  27. Nagarajan, R. P., Zhang, J., Li, W. & Chen, Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274, 33412–33418 ( 1999).

    Article  CAS  Google Scholar 

  28. Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner of MAD proteins in TGF-β signalling. Nature 383, 691– 696 (1996).

    Article  CAS  Google Scholar 

  29. Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators . Mol. Cell 1, 611–617 (1998).

    Article  CAS  Google Scholar 

  30. Espinas, M. L. et al. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J. Biol. Chem. 274, 16461–16469 (1999).

    Article  CAS  Google Scholar 

  31. Bardwell, V. J. & Treisman, R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 8, 1664–1677 (1994).

    Article  CAS  Google Scholar 

  32. Li, L., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E. B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070– 4079 (1994).

    Article  CAS  Google Scholar 

  33. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  34. Zentella, A., Weis, F. M. B., Ralph, D. A., Laiho, M. & Massagué, J. Early gene responses to transforming growth factor-β in cells lacking growth suppressive RB function . Mol. Cell. Biol. 11, 4952– 4958 (1991).

    Article  CAS  Google Scholar 

  35. Yeo, C. Y., Chen, X. & Whitman, M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. J. Biol. Chem. 274, 26584–26590 ( 1999).

    Article  CAS  Google Scholar 

  36. Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP–Smad and Olf signaling pathways. Cell 100 , 229–240 (2000).

    Article  CAS  Google Scholar 

  37. Germain, S., Howell, M., Esslemont, G. M. & Hill, C. S. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14, 435–451 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1, 260–266 (1999).

    Article  CAS  Google Scholar 

  39. Pardali, K. et al. Role of smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-beta. J. Biol. Chem. 275, 29244–29256. (2000 ).

    Article  CAS  Google Scholar 

  40. Claassen, G. F. & Hann, S. R. A role for transcriptional repression of p21Cip1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. Proc. Natl Acad. Sci. USA (2000).

  41. Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA-binding in TGF-β signaling. Cell 94, 585–594 (1998).

    Article  CAS  Google Scholar 

  42. Chen, C. R., Kang, Y. & Massagué, J. Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc.Natl Acad. Sci. USA 98, 992–999 (2001).

    Article  CAS  Google Scholar 

  43. Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M. & Massagué, J. Growth inhibition by TGF-β1 linked to suppression of retinoblastoma protein phosphorylation. Cell 62, 175– 185 (1990).

    Article  CAS  Google Scholar 

  44. Liu, B., Dou, C. L., Prabhu, L. & Lai, E. FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals . Mol. Cell. Biol. 19, 424– 430 (1999).

    Article  Google Scholar 

  45. Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGFβ/Smad signaling by ongenic ras. Genes Dev. 13, 804–816 ( 1999).

    Article  CAS  Google Scholar 

  46. Wotton, D., Lo, R. S., Lee, S. & Massagué, J. A smad transcriptional corepressor. Cell 97, 29 –39 (1999).

    Article  CAS  Google Scholar 

  47. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGFβ signalling pathways . Nature 383, 832–836 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Liu for Smad7 promoter constructs, and A. Hata, Y. Chen, R. Lo and D. Wotton for discussions. J.S. is a Fellow of the Ministerio de Educación y Cultura of Spain. C.P. and J.M. are, respectively, a Research associate and an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Massagué.

Supplementary information

Figure S1

Promoter analysis of p15Ink4b. (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seoane, J., Pouponnot, C., Staller, P. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3, 400–408 (2001). https://doi.org/10.1038/35070086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing