Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rb function in cell-cycle regulation and apoptosis

Abstract

Loss of cell-cycle control is a hallmark of neoplastic cells. One regulator of the critical G1 to S-phase transition in the cell cycle is the retinoblastoma tumour suppressor protein Rb, which interacts with the E2F family of cell-cycle transcription factors to repress gene transcription required for this transition. Through its interaction with E2F, Rb also regulates genes that control apoptosis. Here we review the roles of Rb in regulating the cell cycle and apoptosis and discuss recent results linking these Rb functions to chromatin-remodelling enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The roles of the interactions of Rb with the E2F transcription factors and with chromatin-remodelling complexes in the regulation of the cell cycle and in apoptosis are still emerging.

Similar content being viewed by others

References

  1. Lee, W. H. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235, 1394–1399 (1987).

    Article  CAS  Google Scholar 

  2. Fung, Y. K. et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236, 1657–1661 (1987).

    Article  CAS  Google Scholar 

  3. Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  Google Scholar 

  4. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  5. Huang, H.J., et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242, 1563–1566 (1988).

    Article  CAS  Google Scholar 

  6. Nevins, J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9, 585–593 (1998).

    CAS  PubMed  Google Scholar 

  7. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  Google Scholar 

  8. Horowitz, J. M. et al. Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumour cells. Proc. Natl Acad. Sci. USA 87, 2775–2779 (1990).

    Article  CAS  Google Scholar 

  9. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    Article  CAS  Google Scholar 

  10. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  CAS  Google Scholar 

  11. Ludlow, J.W. et al. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56, 57–65 (1989).

    Article  CAS  Google Scholar 

  12. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  13. Lundberg, A. S. & Weinberg, R. A. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol. 18, 753–761 (1998).

    Article  CAS  Google Scholar 

  14. Harbour, J. W., Luo, R. X., Dei Sante, A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999).

    Article  CAS  Google Scholar 

  15. Flemington, E. K., Speck, S. H. & Kaelin, W. J. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA 90, 6914–6918 (1993).

    Article  CAS  Google Scholar 

  16. Helin, K., Harlow, E. & Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol. 13, 6501–6508 (1993).

    Article  CAS  Google Scholar 

  17. Weintraub, S. J. et al. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812–815 (1995).

    Article  CAS  Google Scholar 

  18. Sellers, W. R., Rodgers, J. W. & Kaelin, W. J. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl Acad. Sci. USA 92, 11544–11548 (1995).

    Article  CAS  Google Scholar 

  19. Bremner, R. et al. Direct transcriptional repression by pRB and its reversal by specific cyclins. Mol. Cell. Biol. 15, 3256–3265 (1995).

    Article  CAS  Google Scholar 

  20. Adnane, J., Shao, Z. & Robbins, P. D. The retinoblastoma susceptibility gene product represses transcription when directly bound to the promoter. J. Biol. Chem. 270, 8837–8843 (1995).

    Article  CAS  Google Scholar 

  21. Johnson, D.G., Schwarz, J.K., Cress, W.D. & Nevins, J.R. Expression of transcription factor E2F-1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).

    Article  CAS  Google Scholar 

  22. Zhu, L., et al. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7, 1111–1125 (1993).

    Article  CAS  Google Scholar 

  23. Qin, X. Q. et al. The transcription factor E2F-1 is a downstream target of RB action. Mol. Cell. Biol. 15, 742–755 (1995).

    Article  CAS  Google Scholar 

  24. Zhang, H. S., Postigo, A. A. & Dean, D. C. Active transcriptional repression by the Rb–E2F complex mediates G1 arrest triggered by p16INK4a, TGFβ, and contact inhibition. Cell 97, 53–61 (1999).

    Article  CAS  Google Scholar 

  25. He, S. et al. E2F is required to prevent inappropriate S-phase entry of mammalian cells. Mol. Cell. Biol. 20, 363–271 (2000).

    Article  CAS  Google Scholar 

  26. Morris, L., Allen, E. & La Thangue, N. B. Regulation of E2F transcription by cyclin E–Cdk2 kinase mediated through p 300/CBP co-activators. Nature Cell Biol. 2, 232–239 (2000).

    Article  CAS  Google Scholar 

  27. Felsenfeld, G. Chromatin as an essential part of the transcriptional mechanism. Nature 355, 219–224 (1992).

    Article  CAS  Google Scholar 

  28. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodelling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  CAS  Google Scholar 

  29. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

  30. Hassig, C. A. & Schreiber, S. L. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. 1, 300–308 (1997).

    Article  CAS  Google Scholar 

  31. Heinzel, T., et al. A complex containing N-CoR, mSin 3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).

    Article  CAS  Google Scholar 

  32. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).

    Article  CAS  Google Scholar 

  33. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–356 (1997).

    Article  CAS  Google Scholar 

  34. Alland, L. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49–55 (1997).

    Article  CAS  Google Scholar 

  35. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  Google Scholar 

  36. Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  Google Scholar 

  37. Magnaghi, J. L. et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601–605 (1998).

    Article  Google Scholar 

  38. Lai, A. et al. RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins. Mol. Cell. Biol. 19, 6632–6641 (1999).

    Article  CAS  Google Scholar 

  39. Trouche, D., Cook, A. & Kouzarides, T. The CBP co-activator stimulates E2F-1/DP1 activity. Nucleic Acids Res. 24, 4139–4145 (1996).

    Article  CAS  Google Scholar 

  40. Ross, J. F., Liu, X. & Dynlacht, B. D. Mechanism of transcriptional repression of E2F by the retinoblastoma tumour suppressor protein. Mol. Cell 3, 195–205 (1999).

  41. Meloni, A. R., Smith, E. J. & Nevins, J. R. A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl Acad. Sci. USA 96, 9574–9579 (1999).

    Article  CAS  Google Scholar 

  42. Tyler, J. K. & Kadonaga, J. T. The ‘dark side’ of chromatin remodelling: repressive effects on transcription. Cell 99, 443–446 (1999).

    Article  CAS  Google Scholar 

  43. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  44. Staehling-Hampton, K., Ciampa, P. J., Brook, A. & Dyson, N. A genetic screen for modifiers of E2F in Drosophila melanogaster. Genetics 153, 275–287 (1999).

  45. Phelan, M. L., Sif, S., Narlikar, G. J. & Kingston, R. E. Reconstitution of a core chromatin remodelling complex from SWI/SNF subunits. Mol. Cell 3, 247–253 (1999).

    Article  CAS  Google Scholar 

  46. Dunaief, J. L. et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119–130 (1994).

    Article  CAS  Google Scholar 

  47. Singh, P., Coe, J. & Hong, W. A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374, 562–565 (1995).

    Article  CAS  Google Scholar 

  48. Trouche, D., Le, C. C., Muchardt, C., Yaniv, M. & Kouzarides, T. RB and hBrm cooperate to repress the activation functions of E2F-1. Proc. Natl Acad. Sci. USA 94, 11268–11273 (1997).

    Article  CAS  Google Scholar 

  49. Zhu, L. et al. The pRB-related protein p 107 contains two growth suppression domains: independent interactions with E2F and cyclin/cdk complexes. EMBO J. 14, 1904–1913 (1995).

    Article  CAS  Google Scholar 

  50. Knudsen, E. S. & Wang, J. Y. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J. Biol. Chem. 271, 8313–8320 (1996).

    Article  CAS  Google Scholar 

  51. Knudsen, E. S. & Wang, J. Y. Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol. Cell. Biol. 17, 5771–5783 (1997).

    Article  CAS  Google Scholar 

  52. Morgenbesser, S. D., Williams, B. O., Jacks, T. & Depinho, R. A. p 53-dependent apoptosis produced by rb deficiency in the developing mouse lens. Nature 371, 72–74 (1994).

    Article  CAS  Google Scholar 

  53. Symonds, H. et al. p 53-dependent apoptosis suppresses tumour growth and progression in vivo. Cell 78, 703–711 (1994).

    Article  CAS  Google Scholar 

  54. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  Google Scholar 

  55. Pomerantz, J. et al. The Ink 4a tumour suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92, 713–723 (1998).

    Article  CAS  Google Scholar 

  56. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  Google Scholar 

  57. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  Google Scholar 

  58. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  Google Scholar 

  59. Tsai, K. Y. et al. Mutation of E2F-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  Google Scholar 

  60. Pan, H. & Griep, A. E. Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 9, 2157–2169 (1995).

    Article  CAS  Google Scholar 

  61. Hsieh, J. K., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F-1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 11, 1840–1852 (1997).

    Article  CAS  Google Scholar 

  62. Phillips, A. C., Bates, S., Ryan, K. M., Helin, K. & Vousden, K. H. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11, 1853–1863 (1997).

    Article  CAS  Google Scholar 

  63. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking antiapoptotic signalling pathways. Mol. Cell 4, 771–781 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harbour, J., Dean, D. Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2, E65–E67 (2000). https://doi.org/10.1038/35008695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing