Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation

Abstract

Here we show that plasma kallikrein (PKal) mediates a plasminogen (Plg) cascade in adipocyte differentiation. Ecotin, an inhibitor of serine proteases, inhibits cell-shape change, adipocyte-specific gene expression, and lipid accumulation during adipogenesis in culture. Deficiency of Plg, but not of urokinase or tissue-type plasminogen activator, suppresses adipogenesis during differentiation of 3T3-L1 cells and mammary-gland involution. PKal, which is inhibited by ecotin, is required for adipose conversion, Plg activation and 3T3-L1 differentiation. Human plasma lacking PKal does not support differentiation of 3T3-L1 cells. PKal is therefore a physiological regulator that acts in the Plg cascade during adipogenesis. We propose that the Plg cascade fosters adipocyte differentiation by degradation of the fibronectin-rich preadipocyte stromal matrix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of serine proteases during differentiation of 3T3-L1 cells reduces adipose conversion.
Figure 2: The Plg system is regulated and required during 3T3-L1 cell differentiation.
Figure 3: Adipogenesis is reduced in female mice treated with ecotin during mammary-gland involution.
Figure 4: Adipocyte differentiation is impaired during involution in Plg-deficient, but not uPA-deficient, mice.
Figure 5: PKal is present during adipogenesis and is required for differentiation of 3T3-L1 cells.
Figure 6: Plg and PKal promote adipose conversion in the absence of FBS.
Figure 7: PKal-mediated Plg activation promotes fibronectin degradation during adipocyte differentiation.

Similar content being viewed by others

References

  1. Hwang, C. S., Loftus, T. M., Mandrup, S. & Lane, M. D. Adipocyte differentiation and leptin expression. Annu. Rev. Cell Dev. Biol. 13, 231–259 (1997).

    Article  CAS  Google Scholar 

  2. Lowell, B. B. PPARγ: An essential regulator of adipogenesis and modulator of fat cell function. Cell 99, 239–242 (1999).

    Article  CAS  Google Scholar 

  3. Smas, C. M. & Sul, H. S. Control of adipocyte differentiation. Biochem. J. 309, 697–710 (1995).

    Article  CAS  Google Scholar 

  4. Cowherd, R. M., Lyle, R. E. & McGehee, R. E. Jr Molecular regulation of adipocyte differentiation. Semin. Cell Dev. Biol. 10, 3–10 (1999).

    Article  CAS  Google Scholar 

  5. Liotta, L. A. et al. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 41, 4629–4636 (1981).

    CAS  PubMed  Google Scholar 

  6. Chen, Z. L. & Strickland, S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925 (1997).

    Article  CAS  Google Scholar 

  7. Booth, B. A., Boes, M. & Bar, R. S. IGFBP-3 proteolysis by plasmin, thrombin, serum: heparin binding, IGF binding, and structure of fragments. Am. J. Physiol. 271, E465–E470 (1996).

    CAS  PubMed  Google Scholar 

  8. Chung, C. H., Ives, H. E., Almeda, S. & Goldberg, A. L. Purification from Escherichia coli of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J. Biol. Chem. 258, 11032–11038 (1983).

    CAS  PubMed  Google Scholar 

  9. Wang, C. I., Yang, Q. & Craik, C. S. Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. J. Biol. Chem. 270, 12250–12256 (1995).

    Article  CAS  Google Scholar 

  10. Cao, Z., Umek, R. M. & McKnight, S. L. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5, 1538–1552 (1991).

    Article  CAS  Google Scholar 

  11. Pairault, J. & Green, H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc. Natl Acad. Sci. USA 76, 5138–5142 (1979).

    Article  CAS  Google Scholar 

  12. Kwaan, H. C. The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev. 11, 291–311 (1992).

    Article  CAS  Google Scholar 

  13. Rijken, D. C. Plasminogen activators and plasminogen activator inhibitors: biochemical aspects. Baillieres Clin. Haematol. 8, 291–312 (1995).

    Article  CAS  Google Scholar 

  14. Lascelles, A. K. & Lee, C. S. in Lactation: A Comprehensive Treatise (ed. Larson, B. L.) 115–176 (Academic, New York, 1978).

    Google Scholar 

  15. Lund, L. R.et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122, 181–193 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bugge, T. H., Flick, M. J., Daugherty, C. C. & Degen, J. L. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev. 9, 794–807 (1995).

    Article  CAS  Google Scholar 

  17. Carmeliet, P. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368, 419–424 (1994).

    Article  CAS  Google Scholar 

  18. Ulmer, J. S., Lindquist, R. N., Dennis, M. S. & Lazarus, R. A. Ecotin is a potent inhibitor of the contact system proteases factor XIIa and plasma kallikrein. FEBS Lett. 365, 159–163 (1995).

    Article  CAS  Google Scholar 

  19. Ichinose, A., Fujikawa, K. & Suyama, T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J. Biol. Chem. 261, 3486–3489 (1986).

    CAS  PubMed  Google Scholar 

  20. Hauert, J., Nicoloso, G., Schleuning, W. D., Bachmann, F. & Schapira, M. Plasminogen activators in dextran sulfate-activated euglobulin fractions: a molecular analysis of factor XII- and prekallikrein-dependent fibrinolysis. Blood 73, 994–999 (1989).

    CAS  PubMed  Google Scholar 

  21. Colman, R. W. Activation of plasminogen by human plasma kallikrein. Biochem. Biophys. Res. Commun. 35, 273–279 (1969).

    Article  CAS  Google Scholar 

  22. Miles, L. A., Greengard, J. S. & Griffin, J. H. A comparison of the abilities of plasma kallikrein, beta-Factor XIIa, Factor XIa and urokinase to activate plasminogen. Thromb. Res. 29, 407–417 (1983).

    Article  CAS  Google Scholar 

  23. Saito, H. et al. Heterogeneity of human prekallikrein deficiency (Fletcher trait): evidence that five of 18 cases are positive for cross-reacting material. N. Engl. J. Med. 305, 910–914 (1981).

    Article  CAS  Google Scholar 

  24. Raspi, G. Kallikrein and kallikrein-like proteinases: purification and determination by chromatographic and electrophoretic methods. J. Chromatogr. B 684, 265–287 (1996).

    Article  CAS  Google Scholar 

  25. Schousboe, I., Feddersen, K. & Rojkjaer, R. Factor XIIa is a kinetically favorable plasminogen activator. Thromb. Haemost. 82, 1041–1046 (1999).

    Article  CAS  Google Scholar 

  26. Loza, J. P., Gurewich, V., Johnstone, M. & Pannell, R. Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis. Thromb. Haemost. 71, 347–352 (1994).

    Article  CAS  Google Scholar 

  27. Lin, Y. et al. High molecular weight kininogen peptides inhibit the formation of kallikrein on endothelial cell surfaces and subsequent urokinase- dependent plasmin formation. Blood 90, 690–697 (1997).

    CAS  PubMed  Google Scholar 

  28. Behrendt, N. et al. The ligand-binding domain of the cell surface receptor for urokinase- type plasminogen activator. J. Biol. Chem. 266, 7842–7847 (1991).

    CAS  PubMed  Google Scholar 

  29. Tait, J. F. & Fujikawa, K. Identification of the binding site for plasma prekallikrein in human high molecular weight kininogen. A region from residues 185 to 224 of the kininogen light chain retains full binding activity. J. Biol. Chem. 261, 15396–15401 (1986).

    CAS  PubMed  Google Scholar 

  30. Colman, R. W. et al. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J. Clin. Invest. 100, 1481–1487 (1997).

    Article  CAS  Google Scholar 

  31. Dano, K. et al. Plasminogen activators, tissue degradation, and cancer. Adv. Cancer. Res. 44, 139–266 (1985).

    Article  CAS  Google Scholar 

  32. Samad, F. & Loskutoff, D. J. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice. Mol. Med. 2, 568–582 (1996).

    Article  CAS  Google Scholar 

  33. Juhan-Vague, I. & Alessi, M. C. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb. Haemost. 78, 656–660 (1997).

    Article  CAS  Google Scholar 

  34. Samad, F., Yamamoto, K. & Loskutoff, D. J. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide. J. Clin. Invest. 97, 37–46 (1996).

    Article  CAS  Google Scholar 

  35. Loskutoff, D. J., Curriden, S. A., Hu, G. & Deng, G. Regulation of cell adhesion by PAI-1. Apmis 107, 54–61 (1999).

    Article  CAS  Google Scholar 

  36. Weiner, F. R., Shah, A., Smith, P. J., Rubin, C. S. & Zern, M. A. Regulation of collagen gene expression in 3T3-L1 cells. Effects of adipocyte differentiation and tumor necrosis factor alpha. Biochemistry 28, 4094–4099 (1989).

    Article  CAS  Google Scholar 

  37. Bortell, R., Owen, T. A., Ignotz, R., Stein, G. S. & Stein, J. L. TGF beta 1 prevents the down-regulation of type I procollagen, fibronectin, and TGF beta 1 gene expression associated with 3T3-L1 pre- adipocyte differentiation. J. Cell Biochem. 54, 256–263 (1994).

    Article  CAS  Google Scholar 

  38. Ali, I. U. & Hynes, R. O. Effects of cytochalasin B and colchicine on attachment of a major surface protein of fibroblasts. Biochim. Biophys. Acta. 471, 16–24 (1977).

    Article  CAS  Google Scholar 

  39. Tumova, S., Woods, A. & Couchman, J. R. Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences. J. Biol. Chem. 275, 9410–9417 (2000).

    Article  CAS  Google Scholar 

  40. Alexander, C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genet. 25, 329–332 (2000).

    Article  CAS  Google Scholar 

  41. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).

    Article  CAS  Google Scholar 

  42. Smith, P. J., Wise, L. S., Berkowitz, R., Wan, C. & Rubin, C. S. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J. Biol. Chem. 263, 9402–9408 (1988).

    CAS  PubMed  Google Scholar 

  43. Rajkumar, K., Modric, T. & Murphy, L. J. Impaired adipogenesis in insulin-like growth factor binding protein-1 transgenic mice. J. Endocrinol. 162, 457–465 (1999).

    Article  CAS  Google Scholar 

  44. Campbell, P. G. & Andress, D. L. Plasmin degradation of insulin-like growth factor-binding protein-5 (IGFBP-5): regulation by IGFBP-5-(201–218). Am. J. Physiol. 273, E996–E1004 (1997).

    CAS  PubMed  Google Scholar 

  45. Zheng, B., Clarke, J. B., Busby, W. H., Duan, C. & Clemmons, D. R. Insulin-like growth factor-binding protein-5 is cleaved by physiological concentrations of thrombin. Endocrinology 139, 1708–1714 (1998).

    Article  CAS  Google Scholar 

  46. Alexander, C. M., Selvarajan, S., Mudgett, J., & Werb, Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J. Cell. Biol. (in the press).

  47. Lund, L. R. et al. Lactational development and involution of the mammary gland requires plasminogen. Development 127, 4481–4492 (2000).

    CAS  PubMed  Google Scholar 

  48. Bernlohr, D. A., Angus, C. W., Lane, M. D., Bolanowski, M. A. & Kelly, T. J. Jr Expression of specific mRNAs during adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. Proc. Natl Acad. Sci. USA 81, 5468–5472 (1984).

    Article  CAS  Google Scholar 

  49. Deutsch, D. G. & Mertz, E. T. Plasminogen: purification from human plasma by affinity chromatography. Science 170, 1095–1096 (1970).

    Article  CAS  Google Scholar 

  50. Ramirez-Zacarias, J. L., Castro-Munozledo, F. & Kuri-Harcuch, W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97, 493–497 (1992).

    Article  CAS  Google Scholar 

  51. Finbloom, D. S. et al. Growth hormone and erythropoietin differentially activate DNA-binding proteins by tyrosine phosphorylation. Mol. Cell. Biol. 14, 2113–2118 (1994).

    Article  CAS  Google Scholar 

  52. Talhouk, R. S., Chin, J. R., Unemori, E. N., Werb, Z. & Bissell, M. J. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112, 439–449 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (to C.S.C. and Z.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zena Werb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvarajan, S., Lund, L., Takeuchi, T. et al. A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell Biol 3, 267–275 (2001). https://doi.org/10.1038/35060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35060059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing