Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels

A Retraction to this article was published on 27 March 2015

Abstract

A dynamic positive feedback mechanism, known as ‘facilitation’, augments L-type calcium-ion currents (ICa) in response to increased intracellular Ca2+ concentrations. The Ca2+-binding protein calmodulin (CaM) has been implicated in facilitation, but the single-channel signature and the signalling events underlying Ca2+/CaM-dependent facilitation are unknown. Here we show that the Ca2+/CaM-dependent protein kinase II (CaMK) is necessary and possibly sufficient for ICa facilitation. CaMK induces a channel-gating mode that is characterized by frequent, long openings of L-type Ca2+ channels. We conclude that CaMK-mediated phosphorylation is an essential signalling event in triggering Ca2+/CaM-dependent ICa facilitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paired depolarizing pulses (–80 mV to +10 mV at 0.5 Hz) lead to Ca2+-dependent facilitation of whole-cell ICa.
Figure 2: Constitutively active CaMK causes prolonged openings of single L-type Ca2+ channels in excised inside-out patches.
Figure 3: Quantification of the open times of single L-type Ca2+ channels.
Figure 4: CaMK favours a single, high-open-probability mode of gating of L-type Ca2+ channels, characterized by prolonged channel openings.

Similar content being viewed by others

References

  1. Murphy, T. H., Worley, P. F. & Baraban, J. M. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635 (1991).

    Article  CAS  Google Scholar 

  2. Artalejo, C. R., Adams, M. E. & Fox, A. P. Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76 (1994).

    Article  CAS  Google Scholar 

  3. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134–139 (1988).

    Article  CAS  Google Scholar 

  4. Hadley, R. W. & Lederer, W. J. Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms. J. Physiol. (Lond.) 257–268 (1991).

  5. Marban, E. & Tsien, R. W. Enhancement of calcium current during digitalis inotropy in mammalian heart: positive feed-back regulation by intracellular calcium? J. Physiol. (Lond.) 329, 589–614 (1982).

    Article  CAS  Google Scholar 

  6. McCarron, J. G. et al. Calcium-dependent enhancement of calcium current in smooth muscle by calmodulin-dependent protein kinase II. Nature 357, 74–77 (1992).

    Article  CAS  Google Scholar 

  7. Xiao, R. P., Cheng, H., Lederer, W. J., Suzuki, T. & Lakatta, E. G. Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc. Natl Acad. Sci.USA 91, 9659–9663 (1994).

    Article  CAS  Google Scholar 

  8. Yuan, W. & Bers, D. M. Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am. J. Physiol. 267, H982–H993 (1994).

    CAS  PubMed  Google Scholar 

  9. Anderson, M. E., Braun, A. P. & Schulman, H. & Premack, B. A. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ. Res. 75 854–861 (1994).

    Article  CAS  Google Scholar 

  10. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  CAS  Google Scholar 

  11. Payne, M. E. et al. Calcium/calmodulin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J. Biol. Chem. 263, 7190–7195 (1988).

    CAS  Google Scholar 

  12. Braun, A. P. & Schulman, H. A non-selective cation current activated via the multifunctional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells. J. Physiol. (Lond.) 488, 37–55 (1995).

    Article  CAS  Google Scholar 

  13. Sculptoreanu, A., Scheuer, T. & Catterall, W. A. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364, 240–243 (1993).

    Article  CAS  Google Scholar 

  14. Lacerda, A. E., Rampe, D. & Brown, A. M. Effects of protein kinase C activators on cardiac Ca2+ channels. Nature 335, 249–251 (1988).

    Article  CAS  Google Scholar 

  15. Odermatt, A., Kurzydlowski, K. & MacLennan, D. H. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J. Biol. Chem. 271, 14206–14213 (1996).

    Article  CAS  Google Scholar 

  16. Hain, J., Nath, S., Mayrleitner, M., Fleischer, S. & Schindler, H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from skeletal muscle. Biophys. J. 67, 1823–1833 (1994).

    Article  CAS  Google Scholar 

  17. Wu, Y., MacMillan, L. B., McNeill, R. B., Colbran, R. J. & Anderson, M. E. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am. J. Physiol. 276, H2168–H2178 (1999).

    CAS  PubMed  Google Scholar 

  18. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  19. Chao, S. H., Suzuki, Y., Zysk, J. R. & Cheung, W. Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol. 26, 75–82 (1984).

    CAS  PubMed  Google Scholar 

  20. Hess, P., Lansman, J. P. & Tsien, R. W. Different modes of Ca channel gating behavior favoured by dihydropyridine Ca agonists and antagonists. Nature 311, 538–544 (1984).

    Article  CAS  Google Scholar 

  21. Li, L., Satoh, H., Ginsburg, K. S. & Bers, D. M. The effect of Ca(2+)-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J. Physiol. (Lond.) 501, 17–31 (1997).

    Article  CAS  Google Scholar 

  22. Anderson, M. E. et al. KN-93, an inhibitor of multifunctional Ca 2+/calmodulin dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J. Pharmacol. Exp. Ther. 287, 996–1006 (1998).

    CAS  PubMed  Google Scholar 

  23. Mazur, A., Roden, D. M. & Anderson, M. E. Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents Torsade de Pointes in rabbits. Circulation 100, 2437–2442 (1999).

    Article  CAS  Google Scholar 

  24. Yue, D. T., Herzig, S. & Marban, E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc. Natl Acad. Sci.USA 87, 753–757 (1990).

    Article  CAS  Google Scholar 

  25. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).

    CAS  Google Scholar 

  26. Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  Google Scholar 

  27. Bers, D. M., Patton, C. W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3–29 (1994).

    Article  CAS  Google Scholar 

  28. VanDongen, A. M. A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels. Biophys. J. 70, 1303–1315 (1996).

    Article  CAS  Google Scholar 

  29. Ishida, A. & Fujisawa, H. Stabilization of calmodulin-dependent protein kinase II through the autoinhibitory domain. J. Biol. Chem. 270, 2163–2170 (1995).

    Article  CAS  Google Scholar 

  30. Glass, D. B., Cheng, H. C., Mende-Mueller, L., Reed, J. & Walsh, D. A. Primary structural determinants essential for potent inhibition of cAMP-dependent protein kinase by inhibitory peptides corresponding to the active portion of the heat-stable inhibitor protein. J. Biol. Chem. 264, 8802–8810 (1989).

    CAS  PubMed  Google Scholar 

  31. House, C. & Kemp, B. E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238, 1726–1728 (1987).

    Article  CAS  Google Scholar 

  32. Gupta, R. C. & Kranias, E. G. Purification and characterization of a calcium-calmodulin-dependent phospholamban kinase from canine myocardium. Biochemistry 28, 5909–5916 (1989).

    Article  CAS  Google Scholar 

  33. Sigworth, F. J. & Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (grants NHLBI, HL03727 and HL62494 to M.E.A.) and the American Heart Association (to M.E.A. and R.J.C.). J.R.B. is an Established Investigator of the American Heart Association. We thank M. Bass for technical assistance, and D. Roden and A. George for helpful criticisms and suggestions.

Correspondence and requests for materials should be addressed to M.E.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzhura, I., Wu, Y., Colbran, R. et al. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2, 173–177 (2000). https://doi.org/10.1038/35004052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing