Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo

Abstract

The budding of clathrin-coated vesicles is essential for protein transport. After budding, clathrin must be uncoated before the vesicles can fuse with other membranous structures. In vitro, the molecular chaperone Hsc70 uncoats clathrin-coated vesicles in an ATP-dependent process that requires a specific J-domain protein such as auxilin. However, there is little evidence that either Hsc70 or auxilin is essential in vivo. Here we show that C. elegans has a single auxilin homologue that is identical to mammalian auxilin in its in vitro activity. When RNA-mediated interference (RNAi) is used to inhibit auxilin expression in C. elegans, oocytes show markedly reduced receptor-mediated endocytosis of yolk protein tagged with green fluorescent protein (GFP). In addition, most of these worms arrest during larval development, exhibit defective distribution of GFP–clathrin in many cell types, and show a marked change in clathrin dynamics, as determined by fluorescence recovery after photobleaching (FRAP). We conclude that auxilin is required for in vivo clathrin-mediated endocytosis and development in C. elegans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CeAUX-53 polymerizes clathrin and supports Hsc70–clathrin interaction.
Figure 2: C. elegans auxilin(RNAi) phenotypes.
Figure 3: GFP–CHC fluorescence in wild-type and auxilin(RNAi) worms.
Figure 4: Different dynamics of GFP–clathrin in coelomocytes from wild-type and auxilin(RNAi) worms.

Similar content being viewed by others

References

  1. Kelley, W. L. Trends Biochem. Sci. 23, 222–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Prasad, K., Barouch, W., Greene, L. & Eisenberg, E. J. Biol. Chem. 268, 23758–23761, (1993).

    CAS  PubMed  Google Scholar 

  3. Ungewickell, E. et al. Nature 378, 632–635 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Greener, T., Zhao, X., Nojima, H., Eisenberg, E. & Greene, L. E. J. Biol. Chem. 275, 1365–1370 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Umeda A., Meyerholz A., & Ungewickell, E. Eur. J. Cell Biol. 79, 336–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Schroder, S. et al. Eur. J. Biochem. 228, 297–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Kanaoka. Y., Kimura, S. H., Okazaki, I., Ikeda M. & Nojima, H. FEBS Lett. 402, 73–80 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Grant, B. & Hirsh, D. Mol. Biol. Cell 10, 4311–4326 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fire, A, Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. & Mello, C. C. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Montgomery, M. K., Xu, S. & Fire, A. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yochem, J., Tuck S., Greenwald, I. & Han, M. Development 126, 597–606 (1999).

    CAS  PubMed  Google Scholar 

  12. Thacker, C., Peters, K. Srayko, M. & Rose, A. M. Genes Dev. 9, 956–971 (2000).

    Article  Google Scholar 

  13. Tavernarakis N., Wang S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Nature Genet. 2, 180–183 (2000).

    Article  Google Scholar 

  14. Kelly, W. G., Xu S., Montgomery, M. K. & Fire, A. Genetics 146, 227–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Che S., Weil, M. M., Etkin, L. D., Epstein, H. F. & Kuang, J. Biochim. Biophys. Acta 1354, 231–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Gaidorov, I., Santini, F., Warren, R. A. & Keen, J. H. Nature Cell Biol. 1, 1–7 (1999).

    Article  Google Scholar 

  17. Jiang, R. Gao, B., Prasad, K., Greene, L. E. & Eisenberg, E. J. Biol. Chem. 275, 8439–8447 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Brodin L., Low, P. & Shupliakov, O. Curr. Opin. Neurobiol. 10, 312–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Greene, L. E. & Eisenberg, E. J. Biol. Chem. 265, 6682–6687 (1990).

    CAS  PubMed  Google Scholar 

  20. Prasad, K., Heuser, J., Eisenberg, E. & Greene, L. J. Biol. Chem. 269, 6931–6939 (1994).

    CAS  PubMed  Google Scholar 

  21. Ye, W. & Lafer, E. M. J. Biol. Chem. 270, 10933–10939 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Barouch, W., Prasad, K., Greene, L. E. & Eisenberg, E. J. Biol. Chem. 269, 28563–28568 (1994).

    CAS  PubMed  Google Scholar 

  23. Holstein, S. E., Ungewickell, H. & Ungewickell, E. J. Cell Biol. 135,925–937 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fire, A. EMBO J. 5, 2673–2680 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mello, C. C., Kramer J. M., Stinchcomb, D. & Ambros, V. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Krause for valuable assistance, Y. Xu for electron micrographs of the baskets, A. Fire for GFP plasmids, Y. Kohara for cDNA clones of C. elegans auxilin, and W. Przylecki for technical support. This work was supported in part by March of Dimes grant FY99-583 (to D.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Eisenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greener, T., Grant, B., Zhang, Y. et al. Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nat Cell Biol 3, 215–219 (2001). https://doi.org/10.1038/35055137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing