Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL

Abstract

To study the role of the BH3 domain in mediating pro-apoptotic and anti-apoptotic activities of Bcl-2 family members, we identified a series of novel small molecules (BH3Is) that inhibit the binding of the Bak BH3 peptide to Bcl-xL. NMR analyses revealed that BH3Is target the BH3-binding pocket of Bcl-xL. Inhibitors specifically block the BH3-domain-mediated heterodimerization between Bcl-2 family members in vitro and in vivo and induce apoptosis. Our results indicate that BH3-dependent heterodimerization is the key function of anti-apoptotic Bcl-2 family members and is required for the maintenance of cellular homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection of small-molecule inhibitors of Bak BH3–Bcl-xL interaction.
Figure 2: Inhibition of BH3–Bcl-xL interaction by BH3Is in vitro.
Figure 3: Induction of apoptosis by BH3Is.
Figure 4: Cytotoxicity of BH3Is.
Figure 5: Disruption of Bcl-2 heterodimerization by BH3 inhibitors in intact cells.
Figure 6: Attenuation of the cytotoxicity of BH3Is by overexpression of Bcl-xL.
Figure 7: The requirement of caspases for cytotoxicity of BH3Is is similar to that of Bax.
Figure 8: NMR analyses of the BH3 inhibitors binding to Bcl-xL.

Similar content being viewed by others

References

  1. Gross, A., McDonnell, J. M. & Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  Google Scholar 

  2. Vander Heiden, M. G. & Thompson, C. B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biol. 1, E209–E216 (1999).

    Article  CAS  Google Scholar 

  3. Tsujimoto, Y. & Shimizu, S. Bcl-2 family: life-or-death switch. FEBS Lett. 466, 6–10 (2000).

    Article  CAS  Google Scholar 

  4. Zha, J. et al. BH3 domain of BAD is required for heterodimerization with Bcl-xL and pro-apoptotic activity. J. Biol. Chem. 272, 24101–24104 (1997).

    Article  CAS  Google Scholar 

  5. Diaz, J. L. et al. A common binding site mediates heterodimerization and homodimerization of Bcl-2 family members. J. Biol. Chem. 272, 11350–11355 (1997).

    Article  CAS  Google Scholar 

  6. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  Google Scholar 

  7. Chang, B. S. et al. The BH3 domain of Bcl-x(S) is required for inhibition of the antiapoptotic function of Bcl-x(L). Mol. Cell. Biol. 19, 6673–6681 (1999).

    Article  CAS  Google Scholar 

  8. Holinger, E. P., Chittenden, T. & Lutz, R. J. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274, 13298–13304 (1999).

    Article  CAS  Google Scholar 

  9. Cosulich, S. C., Worrall, V., Hedge, P. J., Green, S. & Clarke, P. R. Regulation of apoptosis by BH3 domains in a cell-free system. Curr. Biol. 7, 913–920 (1997).

    Article  CAS  Google Scholar 

  10. Minn, A. J. et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385, 353–357 (1997).

    Article  CAS  Google Scholar 

  11. Schendel, S. L. et al. Channel formation by antiapoptotic protein Bcl-2. Proc. Natl Acad. Sci. USA 94, 5113–5118 (1997).

    Article  CAS  Google Scholar 

  12. Antonsson, B. et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 277, 370–372 (1997).

    Article  CAS  Google Scholar 

  13. Minn, A. J. et al. Bcl-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms. EMBO J. 18, 632–643 (1999).

    Article  CAS  Google Scholar 

  14. Conus, S. et al. Bcl-2 is a monomeric protein: prevention of homodimerization by structural constraints. EMBO J. 19, 1534–1544 (2000).

    Article  CAS  Google Scholar 

  15. Schreiber, S. L. Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem. 6, 1127–1152 (1998).

    Article  CAS  Google Scholar 

  16. Thompson, L. A. & Ellman, J. A. Synthesis and applications of small molecule libraries. Chem. Rev. 96, 555–600 (1996).

    Article  CAS  Google Scholar 

  17. McMillan, K. et al. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc. Natl Acad. Sci. USA 97, 1506–1511 (2000).

    Article  CAS  Google Scholar 

  18. Young, K. et al. Identification of a calcium channel modulator using a high throughput yeast two-hybrid screen. Nature Biotechnol. 16, 946–950 (1998). (erratum, Nature Biotechnol. 16, 1074 (1998)).

    Article  CAS  Google Scholar 

  19. Dandliker, W. B., Hsu, M. L., Levin, J. & Rao, B. R. Equilibrium and kinetic inhibition assays based upon fluorescence polarization. Methods Enzymol. 74, 3–28 (1981).

    Article  CAS  Google Scholar 

  20. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  Google Scholar 

  21. Zhang, M., Zamore, P. D., Carmo-Fonseca, M., Lamond, A. I. & Green, M. R. Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc. Natl Acad. Sci. USA 89, 8769–8773 (1992).

    Article  CAS  Google Scholar 

  22. Lugovskoy, A. A. et al. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell 99, 747–755 (1999).

    Article  CAS  Google Scholar 

  23. Chou, J. J., Li, H., Salvesen, G. S., Yuan, J. & Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96, 615–624 (1999).

    Article  CAS  Google Scholar 

  24. McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J. & Cowburn, D. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96, 625–634 (1999).

    Article  CAS  Google Scholar 

  25. Cryns, V. & Yuan, J. Proteases to die for. Genes Dev. 12, 1551–1570 (1998). (erratum, Genes Dev. 13, 371 (1999)).

    Article  CAS  Google Scholar 

  26. Hsu, Y. T. & Youle, R. J. Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829–13834 (1997).

    Article  CAS  Google Scholar 

  27. Mahajan, N. P. et al. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature Biotechnol. 16, 547–552 (1998).

    Article  CAS  Google Scholar 

  28. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87, 619–628 (1996).

    Article  CAS  Google Scholar 

  29. Vander Heiden, M. G., Chandel, N. S., Schumacker, P. T. & Thompson, C. B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).

    Article  CAS  Google Scholar 

  30. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).

    Article  CAS  Google Scholar 

  31. Gross, A., Jockel, J., Wei, M. C. & Korsmeyer, S. J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878–3885 (1998).

    Article  CAS  Google Scholar 

  32. Matsuyama, S., Schendel, S. L., Xie, Z. & Reed, J. C. Cytoprotection by Bcl-2 requires the pore-forming α5 and α6 helices. J. Biol. Chem. 273, 30995–31001 (1998).

    Article  CAS  Google Scholar 

  33. Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins. Science 278, 497–499 (1997).

    Article  CAS  Google Scholar 

  34. Hajduk, P. J. et al. High-throughput nuclear magnetic resonance-based screening. J. Med. Chem. 42, 2315–2317 (1999).

    Article  CAS  Google Scholar 

  35. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  Google Scholar 

  36. Shimizu, S. & Tsujimoto, Y. Proapoptotic BH3-only bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl Acad. Sci. USA 97, 577–582 (2000).

    Article  CAS  Google Scholar 

  37. Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G. & Green, D. R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL . J. Biol. Chem. 274, 2225–2233 (1999).

    Article  CAS  Google Scholar 

  38. Eskes, R., Desagher, S., Antonsson, B. & Martinou, J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935 (2000).

    Article  CAS  Google Scholar 

  39. Kudla, G. et al. The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved Bid is inhibited by the N-terminal fragment. J. Biol. Chem. 275, 22713–22718 (2000).

    Article  CAS  Google Scholar 

  40. Decaudin, D., Marzo, I., Brenner, C. & Kroemer, G. Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy. Int. J. Oncol. 12, 141–152 (1998).

    CAS  PubMed  Google Scholar 

  41. Reed, J. C. Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol. Oncol. Clin. North Am. 9, 451–473 (1995).

    Article  CAS  Google Scholar 

  42. Miayake, H., Tolcher, A. & Gleave, M. E. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J. Natl Cancer Inst. 92, 34–41 (2000).

    Article  CAS  Google Scholar 

  43. Jansen, B. et al. Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med. 4, 232–234 (1998).

    Article  CAS  Google Scholar 

  44. Baba, M., Iishi, H. & Tatsuta, M. In vivo electroporetic transfer of bcl-2 antisense oligonucleotide inhibits the development of hepatocellular carcinoma in rats. Int. J. Cancer 85, 260–266 (2000).

    Article  CAS  Google Scholar 

  45. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    Article  CAS  Google Scholar 

  46. Johnson, P. E., Tomme, P., Joshi, M. D. & McIntosh, L. P. Interaction of soluble cellooligosaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC 2. NMR and ultraviolet absorption spectroscopy. Biochemistry 35, 13895–13906 (1996).

    Article  CAS  Google Scholar 

  47. Talluri, S. & Wagner, G. An optimized 3D NOESY-HSQC. J. Magn. Reson. B 112, 200–205 (1996).

    Article  CAS  Google Scholar 

  48. Grzesiek, S. & Bax, A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J. Biomol. NMR 3, 185–204 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Thompson, S. Korsmeyer, R. Reed and L. Bergeron for their gifts of the cells and expression vectors; R. Fathi, J. D. Gross, J. Tuttle, A. Fahmy and G. Heffron for experimental assistance; and R. King, B. Antonsson, A. Sinskey, P. Sorger, R. Ward, O. Gozani and N. Moerke for helpful discussions. A.D. is a recipient of a postdoctoral fellowship from the American Cancer Society. This work was supported in part by the American Heart Association Established Investigatorship and NIH grants to J.Y., by an NIH grant to G.W. and by a research grant from Biomeasure to M.C. The Institute of Chemistry and Cell Biology is supported by NIH, Merck & Co. Inc. and Merck KGaA, Darmstadt, Germany. Acquisition and maintenance of the spectrometers and computers are supported by the Giovanni Armenise-Harvard Foundation for Advanced Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degterev, A., Lugovskoy, A., Cardone, M. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3, 173–182 (2001). https://doi.org/10.1038/35055085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing